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A Data construction

Unless otherwise noted, all data are from the Bureau of Economic Analysis (BEA)’s NIPA
Tables and available in quarterly frequency from 1970Q1 until 2012Q2.

A.1 Data for the exogenous processes

Capital and labor tax rates. Our approach to calculate average tax rates closely follows
Mendoza et al. (1994), Jones (2002), and Leeper et al. (2010). We first compute the average
personal income tax rate

τ p = IT

W + PRI/2 + CI
,

where IT is personal current tax revenues (Table 3.1 line 3), W is wage and salary accruals
(Table 1.12 line 3), PRI is proprietor’s income (Table 1.12 line 9), and CI ≡ PRI/2 +RI +
CP +NI is capital income. Here, RI is rental income (Table 1.12 line 12), CP is corporate
profits (Table 1.12 line 13), and NI denotes the net interest income (Table 1.12 line 18).

The average labor and capital income tax rates can then be computed as

τn = τ p(W + PRI/2) + CSI

EC + PRI/2 ,

where CSI denotes contributions to government social insurance (Table 3.1 line 7), and EC
is compensation of employees (Table 1.12 line 2), and

τ k = τ pCI + CT + PT

CI + PT
,

where CT is taxes on corporate income (Table 3.1 line 5), and PT is property taxes (Table
3.3 line 8).

Government spending. Government spending is the sum of government consumption
(Table 3.1 line 16) and government investment (Table 3.1 line 35) divided by the GDP deflator
(Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Debt. Federal debt held by the public (St.Louis FED - FRED Database, Series FYGFD-
PUN).

Monetary policy shock. Computed as the residual from a Clarida et al. (2000)-type
Taylor rule (see Appendix B.8).

Total factor productivity (TFP). The TFP series is taken from Fernald (2012), who
closely follows Basu et al. (2006) and provides a quarterly series that is adjusted for capital
and labor utilization.

Relative price of investment. The relative price of investment is taken from Schmitt-
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Grohé and Uribe (2011) and only available until 2006Q4. They base their calculations on
Fisher (2006).

The different sample lengths are not an issue as we estimate each exogenous process
separately. Using the longest available sample assures that we make optimal use of the
available information for each series.
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Figure A.1: Time series of exogenous driving processes.
Notes: Tax rates are demeaned; government spending and technology processes are detrended
using the one-sided HP-filter.

A.2 Data for SMM

Output. Nominal GDP (Table 1.1.5 line 1) divided by the GDP deflator (Table 1.1.4 line 1)
and the civilian noninstitutional population (BLS, Series LNU00000000Q).
Investment. Sum of Residential fixed investment (Table 1.1.5 line 12) and nonresidential
fixed investment (Table 1.1.5 line 9) divided by the GDP deflator (Table 1.1.4 line 1) and the
civilian noninstitutional population (BLS, Series LNU00000000Q).
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Consumption. Sum of personal consumption expenditures for nondurable goods (Table
1.1.5 line 5) and services (Table 1.1.5 line 6) divided by the GDP deflator (Table 1.1.4 line 1)
and the civilian noninstitutional population (BLS, Series LNU00000000Q).
Real wage. Hourly compensation in the nonfarm business sector (BLS, Series PRS85006103)
divided by the GDP deflator (Table 1.1.4 line 1).
Inflation. Computed as the log-difference of the GDP deflator (Table 1.1.4 line 1).
Nominal interest rate. Geometric mean of the effective Federal Funds Rate (St.Louis FED
- FRED Database, Series FEDFUNDS).
Hours. Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing
(St.Louis FED - FRED Database, Series AWHMAN) normalized by 5 days times 24 hours
(providing a mean of about 1/3).

A.3 Additional data for GMM

Interest term spread. We use the difference of the quarterly geometric mean of the 10-Year
Treasury Constant Maturity Rate (FRED Database, Series GS10) and the quarterly geometric
mean of the 3-Month Treasury Bill: Secondary Market Rate (FRED Database, Series TB3MS).
Money growth rate. Growth rate of the M2 Money Stock (FRED Database, Series M2SL).
Commodity inflation. Commodity inflation is computed as the growth rate of the X12-
seasonally adjusted Producer Price Index: All Commodities (FRED Database, Series PPI-
ACO).
Output gap. The output gap is constructed as the deviation of real GDP (FRED Database,
Series GDPC96) from its HP-trend (λ = 1600).

B Econometric Methods

B.1 Modeling Time-Varying Volatility

There are two major competing approaches to model time-varying standard deviations:
GARCH models and stochastic volatility (SV) models (Fernández-Villaverde and Rubio-
Ramírez, 2010). In the standard GARCH model, σ2

t is a function of the squared scaled lagged
innovation in the level equation ν2

t−1 and its own lagged value: σ2
t = ω+α(σt−1νt−1)2 + βσ2

t−1.
The GARCH model has one important drawback: there are no distinct volatility shocks. The
only innovations to the volatility equation are past level shocks, meaning that they cannot be
separated from volatility shocks. As we are especially interested in the effects of shocks to the
volatility, we cannot use a GARCH model but instead employ a stochastic volatility model.
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Note that the SV-framework used in the present study does not imply a mechanical link
between the level shocks and the volatility shocks as a GARCH-model would do. Of course,
as a comparison of Figures ?? and A.1 shows, a large level shock tends to coincide with an
increase in the conditional variance. However, the reason for this increase in the estimated
conditional variance is not a mechanical effect of this level shock subsequently entering the
volatility equation. Rather, the Bayesian estimation of the SV-model weighs the likelihood of
observing such a large shock being drawn from a narrow distribution, i.e., without observing
a simultaneous/previous volatility shock, against the likelihood of observing a shock of this
size that is drawn from a wider distribution due to the occurrence of a variance shock.

B.2 The Particle Filter

For ease of exposition, let xt be a generic observable AR(1) process

xt = ρxt−1 + eσtνt , νt
iid∼ N (0, 1) (B.1)

where the unobserved/latent state σt follows a stochastic volatility process

σt = (1− ρσ) σ̄ + ρσσt−1 + ηεt , εt
iid∼ N (0, 1), (B.2)

where σ̄ is is the unconditional mean of σt. The shock to the volatility εt is assumed to be
independent from the level shock νt.

Hence, a filter is required to obtain the so-called filtering density p (σt|xt; Θ). Due to
the nonlinearity embedded in the stochastic volatility setup of the shocks, we cannot simply
employ the Kalman filter as in the case of linearity and normally distributed shocks. Instead,
we employ the Sequential Importance Resampling (SIR) particle filter, a special application
of the more general class of Sequential Monte Carlo methods, to evaluate the likelihood
(Fernández-Villaverde and Rubio-Ramírez, 2007; Fernández-Villaverde et al., 2011). Given the
structure in (B.1) and (B.2) and some initial value x0, the factorized likelihood of observing
xT can be written as

p
(
xT ; Θ

)
=

T∏
t=1

p
(
xt|xt−1; Θ

)

=
∫
p (x1|x0, σ0; Θ) dσ0

T∏
t=2

∫
p (xt|xt−1, σt; Θ) p

(
σt|xt−1; Θ

)
dσt

=
∫ 1
eσ0
√

2π
exp

[
−1

2

(
x1 − ρx0

eσ0

)2
]
dσ0

×
T∏
t=2

∫ 1
eσt
√

2π
exp

[
−1

2

(
xt − ρxt−1

eσt

)2
]
p
(
σt|xt−1; Θ

)
dσt ,

(B.3)

5



where xt is a (t × 1) vector that stacks the observations on x up to time t, Θ stacks the
parameters, and the last equality follows from the assumption of normally distributed shocks.
Although we do not have an analytical expression for p (σt|xt−1; Θ) , t = 1, . . . , T , and can
therefore not compute it directly, we can employ the particle filter to estimate the likelihood
by iteratively drawing from p (σt|xt−1; Θ).

The underlying idea of the particle filter is to use an approximation of the filtering density
p (σt|xt; Θ) with a simulated distribution generated from empirical data. This distribution
can be formed from mass points, or particles,

p
(
σt|xt; Θ

)
'

N∑
i=0

ωitδσi
t
(σt),

N∑
i=0

ωit = 1, ωit > 0 (B.4)

where δ is the Dirac delta function and ωit is the weight attached to the respective draw/particle
σit (Godsill et al., 2004). We can then use a Sequential Importance Resampling (SIR)-approach
to update particles from time t to t+ 1 and obtain the new filtering distribution at t+ 1 (see,
e.g., Fernández-Villaverde et al., 2011). A convenient by-product of this filtering approach is
that we also approximate p (σt|xt−1; Θ), the distribution we need to build the likelihood.

The SIR is a two-step procedure that, by using a prediction and a resampling/filtering step
for each time period, ultimately allows to iteratively draw from p (σt|xt−1; Θ). Starting with
p (σ0|x0; Θ) = p (σ0; Θ), the prediction step uses the law of motion for the states f(σt+1|σt),
equation (B.2), to obtain the conditional density p (σ1|x0; Θ) = p (ε1) p (σ0|x0; Θ). That is,
given N draws

{
σit|t
}N
i=1

from p (σt|xt; Θ), (here p (σ0|x0; Θ)) and a draw of exogenous shocks

εit ∼ N (0, 1), we can use equation (B.2) to compute
{
σit+1|t

}N
i=1

.1

Next, the resampling/filtering step uses importance resampling to update the conditional
probability from p (σt|xt−1; Θ) to p (σt|xt; Θ). The crucial idea is that if

{
σit|t−1

}N
i=1

is a

draw from p (σt|xt−1; Θ) and {σ̃it}
N
i=1 is a draw with replacement from

{
σit|t−1

}N
i=1

using the
resampling probabilities

ωit =
p
(
xt|xt−1, σit|t−1; Θ

)
∑N
i=1 p

(
xt|xt−1, σit|t−1; Θ

) , (B.5)

then
{
σt|t
}N
i=1

= {σ̃it}
N
i=1 is a draw from p (σt|xt; Θ). The resampling with probabilities given

in (B.5) serves two purposes. First, the reweighting implements an importance sampling
approach, i.e., draws are obtained from a proposal density that is easy to draw from and are
then subsequently reweighted to reflect the density to be approximated (see Arulampalam
et al., 2002, for a derivation).2 Second, without the resampling step, there would be an

1The notation t+ 1|t indicates a draw at time t+ 1 conditioned on the information available at time t.
2In our case, we use the prior density p

(
σt|σt−1; Θ

)
as the importance density.
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increase in the unconditional variance of ωt over time, yielding only one particle with non-zero
weight (known as degeneracy or sample impoverishment, see Arulampalam et al. (2002)).
By resampling, we keep only those particles with high ωit (i.e., those that are closer to the
true state vector). Having now obtained draws from p (σt|xt; Θ), we can again start with the
prediction step to obtain draws for time period t+ 1.

After T iterations, we get an estimate of our likelihood as3

p
(
xT ; Θ

)
' 1
N

N∑
i=1

1
e
σi

0|0
√

2π
exp

−1
2

(
x1 − ρx0

e
σi

0|0

)2


×
T∏
t=2

1
N

N∑
i=1

1
e
σi

t|t−1
√

2π
exp

−1
2

(
xt − ρxt−1

e
σi

t|t−1

)2
 .

(B.6)

For the autoregressive parameters of the AR(2) level equations, ρi1 and ρi2, we impose
a uniform prior for each of the corresponding autoregressive roots over the stability region
(−1,+1). Let ξ1 and ξ2 be the roots of such an AR(2)-process. The autoregressive parameters
corresponding to these roots can be recovered from: ρ1 = ξ1 + ξ2 and ρ2 = −ξ1ξ2 . The
posterior distribution was computed from a 20,500 draw Monte Carlo Markov Chain using
10,000 particles, where the first 5,500 draws were discarded as burn-in draws. Acceptance
rates were generally between 20% and 45%. We also checked identifiability of the SV-process
by simulating data from the process and trying to recover the true parameters from this
artificial data.

B.3 Particle Smoother

We employ the backward-smoothing routine suggested by Godsill et al. (2004) to draw from the
smoothing density p(σT |xT ; Θ) to get a historical distribution of the volatilities. Specifically,
we start with the factorization

p(σT |xT ; Θ) = p(σT |xT ; Θ)
T−1∏
t=1

p(σt|σt+1:T , x
T ; Θ) . (B.7)

3See Fernández-Villaverde and Rubio-Ramírez (2007) and Doucet and Johansen (2009) and the references
contained therein for the conditions required for a central limit theorem to apply, yielding a consistent
estimator of p

(
xT ; Θ

)
.
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The second factor can be further simplified

p(σt|σt+1:T , x
T ; Θ) = p(σt|σt+1, x

t; Θ)

= p(σt|xt; Θ)f(σt+1|σt)
p(σt+1|xt)

∝ p(σt|xt; Θ)f(σt+1|σt) ,

(B.8)

where the first equality results from the Markovian properties of the model and f denotes the
state transition density following from equation (B.2). Equation (B.4) describes how to approx-
imate p(σt|xt; Θ) by forward filtering. Therefore, we can approximate p(σt|σt+1:T , x

T ; Θ) ∝
p(σt|xt; Θ)f(σt+1|σt) by

p(σt|σt+1, x
t; Θ) '

N∑
i=1

ωit|t+1δσi
t
(σt) , (B.9)

where the new weights ωit|t+1 are given by

ωit|t+1 = ωitf(σt+1|σit)∑N
j=1 ω

j
t f(σt+1|σjt )

. (B.10)

and the ωit are the weights obtained in the filtering step. Denote with σ̃it the ith draw from the
smoothing density at time t. At time T, we can obtain draws σ̃iT by drawing from p(σT |xT )
with the weights ωiT . Then, going backwards in time, we can use the above recursions to
iteratively obtain draws σ̃it by resampling using the weights given in (B.10). In order to get
the smoothing distribution, we can use the above recursion repeatedly to simulate different
independent smoothing trajectories. Moreover, given the sequence of smoothed states, we
can also extract the smoothed residuals for both the level and the volatility equation. The
smoothed values were computed at the mean of the posterior distribution using 10,000
trajectories with 10,000 particles each.

B.4 Tailored Randomized Block Metropolis Hastings Algorithm

Let Θ, p
(
xT |Θ

)
, and π(Θ) denote the vector of parameters to be estimated, the likelihood

function, and the prior distribution of the parameters, respectively. The posterior distribution
π(Θ|xT ) can be computed as

π
(
Θ|xT

)
∝ p

(
xT |Θ

)
π (Θ) . (B.11)

Given this usually analytically intractable posterior, most macroeconomic applications employ
a Random Walk Metropolis-Hastings (RW-MH) algorithm to generate draws from the posterior
distribution. However, the standard RW-MH algorithm often has poor mixing properties,
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leading to highly autocorrelated draws, and is therefore often very inefficient. Hence, to
increase the efficiency, we use the Tailored Randomized Block Metropolis Hastings (TaRB-MH)
algorithm proposed by Chib and Ramamurthy (2010).4 Instead of in each iteration step
simultaneously drawing an entire new parameter vector from a proposal density, the parameter
vector is randomly split up into several blocks. Each block is then subsequently updated by a
separate MH run, conditional on the previous step’s values of the parameters in the other
blocks. Ideally, the blocks should be formed according to the correlation between parameters,
with highly correlated parameters belonging to the same block. However, we have no a priori
knowledge about the correlation between parameters and resort to a blocking scheme where
both the number of blocks and its composition are randomized in each step. This algorithm
provides a good compromise between the standard RW-MH and tailored multiple block MH
algorithms that use multiple blocks, which are particularly designed for the problem at hand.
The second feature that improves on the standard RW-MH is that in each step the proposal
density is “tailored” to the location and the curvature of the posterior density in that block
by using a non-derivative based global optimizer. We deviate from Chib and Ramamurthy
(2010) by using the CMAES algorithm (Hansen et al., 2003) instead of a simulated annealing
as the former has been shown to be more efficient (Andreasen, 2010).5 Moreover, it requires
considerably less tuning than a simulated annealing. The TaRB-MH algorithm proceeds as
follows.

1. At each iteration step n, n = 1, . . . , N , the elements of the parameter vector θ are
separated into random blocks (θn,1, θn,2, . . . , θn,pn) by perturbing their initial ordering
and assigning the first parameter in the perturbed vector to the first block and each
following parameter with probability p = 0.5 to a new block, leaving us with 2.5 blocks
on average as we estimate 5 parameters.

2. At each iteration step n, each block θn,l, l = 1, . . . , pn is sampled by a Metropolis-
Hastings step using a proposal density adapted to the posterior in the following way.
Denote with θn,−l the most current value of all blocks except for the lth one, i.e., their
value at the end of step n− 1. To generate a new draw for θn,l, the CMAES-algorithm
is used to find

θ̂n,l = arg max
θn,l

log
[
p
(
xT |θn,l, θn,−l

)
π (Θ)

]
. (B.12)

That is, we use a global optimizer to maximize the posterior over the current block
l, given the value of all other parameters at the end of step n− 1. Having found the
“conditional mode” θ̂n,l, we compute the curvature of the target posterior distribution in

4Using the TaRB-MH decreased the inefficiency factors from values around 10 to below 2.
5For an intuitive introduction to the working of the CMAES algorithm, see Binsbergen et al. (2012).
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the standard way as the negative inverse of the Hessian6 at the “conditional mode”

Vn,l =
−∂ log

[
p
(
xT |θn,l, θn,−l

)
π (Θ)

]
∂θn,lθ′n,l

−1∣∣∣∣∣∣∣
θn,l=θ̂n,l

. (B.13)

Following Chib and Ramamurthy (2010), we use a multivariate t-distribution with ν
degrees of freedom as proposal density for θn,l, ql

(
θn,l| θn,−l, xT

)
. Mean and variance

are set to the “conditional mode” and the negative inverse of the Hessian at this point:

ql
(
θn,l| θn,−l, xT

)
= t

(
θn,l| θ̂n,l, Vn,l, ν

)
. (B.14)

In the Metropolis-Hastings-step, a proposed value θ∗n,l is accepted as the new value of
the block with probability

αl
(
θn,l, θ

∗
n,l

∣∣∣ θn,−l, xT) = min
p
(
xT |θ∗n,l, θn,−l

)
π
(
θ∗n,l

)
p (xT |θn,l, θn,−l) π (θn,l)

t
(
θn,l| θ̂n,l, Vn,l, ν

)
t
(
θ∗n,l

∣∣∣ θ̂n,l, Vn,l, ν) , 1
 . (B.15)

If the proposed value θ∗n,l is rejected, we set θn+1,l = θn,l. This step is repeated for all pn
blocks before the algorithm starts over with step 1.

Setting ν = 5 and iterating over steps 1 and 2, we can - after a suitable burn-in-period -
obtain samples from the desired posterior distribution, which is the invariant distribution of
the resulting Markov Chain. In our case, a burn-in of 2500 proved sufficient.

B.5 Model Solution

Let st denote the ns × 1 vector of state variables in deviations from steady state, including
the exogenous shocks and the perturbation parameter Λ, and let sit denote its ith entry. The
policy function/law of motion for an arbitrary model variable X̂t then has the form

X̂t =
ns∑
i=1

ξXi s
i
t + 1

2

ns∑
i=1

ns∑
j=1

ξXi,js
i
ts
j
t +

ns∑
i=1

ns∑
j=1

ns∑
l=1

ξXi,j,ls
i
ts
j
ts
l
t , (B.16)

6While we use a derivative-free method to find the mode, we use standard numerical differentiation to
compute the Hessian (see Abramowitz and Stegun, 1965, formulas 25.3.24 and 25.3.27) after the actual mode
finding. Hessians resulting from such an approach in larger models are often not positive definite. However,
the dimensionality of our estimation problem is small and the mode quickly discovered, leading to generally
decent numerical behavior. This allows us to use a rather pragmatic approach. In the rare cases where we
encounter an NaN in the computation of the inverse Hessian, we proceed with a 10−4 identity matrix. If the
inverse Hessian is simply not positive definite, we perform a Jordan decomposition of the inverse Hessian,
set the eigenvalues smaller than 1e-8 to 1e-8, and recompose the matrix. But, as mentioned, this rarely ever
happens. As the likelihood function from the particle filter is only asymptotically differentiable, this involves
some numerical error (see e.g. Pitt, 2002). However, as any positive definite matrix allows drawing from the
posterior, this only entails some loss of efficiency (see e.g. Chib and Greenberg, 1995).
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where the ξ’s are scalars that depend on the deep parameters of the model and hats denote per-
centage deviations from steady state. Equation (B.16) shows why lower-order approximations
would not be sufficient for our purpose.

As is well known, a first-order approximation exhibits certainty equivalence. This implies
ξXv = 0, where v denotes the position of a volatility shock in the state vector s. That is, up to
first order, uncertainty shocks do not enter the policy function at all.

For a second-order approximation, it is well known from Schmitt-Grohé and Uribe (2004)
for the homoskedastic case that uncertainty only enters the policy function through a constant
term via the second derivative with respect to the perturbation parameter, i.e., through
ξΛ,Λ 6= 0. However, things are more complicated in the heteroskedastic case where shocks
to the variance occur, leading to an additional effect. Fernández-Villaverde et al. (2010)
prove that in this case, the volatility shocks additionally only enter the policy function with
non-zero coefficients in their interaction term with the respective level shock. Algebraically,
only the cross-product of σ̂i× ν̂i is different from 0. In contrast, all other cross-terms with the
uncertainty shocks are zero, i.e ξXv,j 6=u = 0, where v and u denote the positions of a volatility
and its corresponding level shock in the state vector s, respectively. Hence, the effect of
uncertainty is always mediated through level shocks. It is not possible to shock the variance
of the level shocks independently from the level shock as its effect would be 0 by construction.

Only in the third-order approximation do the volatility shocks enter the policy function
separately from the level shocks in a non-constant form. Most importantly, the term ξi,Λ,Λ is
in general different from 0 for all volatility shocks.

B.6 Simulated Method of Moments

The idea of the Simulated Method of Moments (SMM) is the following. Let xt be a time
t vector of observables from a stationary and ergodic distribution and let {xt}Tt=1 be the
corresponding sequence. Furthermore, let m (xt) denote a k × 1 vector of empirical moments
computed from this data. Denote with {xsimt (θ)}aTt=1 the corresponding time series of length
aT generated from simulating the model using the p×1 parameter vector θ ∈ Θ, with Θ ⊂ Rp.
Let m (xsimt (θ)) be the vector of simulated moments computed from the artificial data. The
SMM estimator is the value of θ that satisfies

θ̂ = arg min
θ∈Θ

[
m (xt)−m

(
xsimt (θ)

)]′
W
[
m (xt)−m

(
xsimt (θ)

)]
, (B.17)

where W is a p× p positive definite weighting matrix. Under the assumption that the model
with θ = θ0 is a correct representation of the true process that generated m (xt) and the
regularity conditions spelled out in Duffie and Singleton (1993), θ̂ is a consistent estimator of
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θ0 with asymptotic distribution
√
T
(
θ̂ − θ0

)
d−→ N

(
0, (1 + 1/a) (J ′WJ)−1

J ′WSWJ (J ′WJ)−1)
, (B.18)

where
S = lim

T→∞
V ar

(
(1/
√
T )

T∑
t=1

m(xt)
)
, (B.19)

and J = E(∂m(xsimt )/∂θ) (see Ruge-Murcia, 2012).
This estimator is asymptotically efficient when using the weighting matrix

W =
(
V longrun

)−1
=
[

lim
T→∞

V ar

(
1√
T

T∑
t=1

m (xt)
)]−1

. (B.20)

The ideal weighting matrix places the most weight on the linear combination of moments
that are the most precisely measured in the data. However, for two reasons, we use only the
diagonal of the optimal weighting matrix:

W diag = diag
(
V longrun

)−1
. (B.21)

First, we would like to put more weight on moments that are actually observed in the data
and that are economically meaningful, rather than on a linear combination of moments (see
also Cochrane, 2005).7 Second, in practice, fully specified weighting matrices often lead
to diverging parameter estimates. As shown in Ruge-Murcia (2012), using only the main
diagonal of the optimal weighting matrix leads to a loss in efficiency but nevertheless delivers
good results in most cases.

When testing the starting values and the convergence of the SMM estimator, we often
found the global minimum being located in regions of the parameter space typically considered
to be extremely unlikely based on estimates using micro data (see e.g. An and Schorfheide,
2007, on the “dilemma of absurd parameter estimates”). At the same time, the local minima
in more plausible regions of the parameter space were characterized by only slightly worse
values of the target function. Thus, we formally include our prior knowledge about plausible
parameter ranges into our SMM estimation as suggested in Ruge-Murcia (2010). Similar to
adding the log prior to the log likelihood in full information Bayesian estimation, we augment
the traditional SMM by using the prior distribution of the parameters as an additional moment
restriction. Denote the mean of the prior distribution with θprior and its covariance matrix

7We additionally increase the weight on output volatility by multiplying the associated entry of the
weighting matrix by 0.05.
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with Ω(θprior). Instead of (B.17), we minimize the distance function

θ̂ = arg min
θ∈Θ

 m (xt)−m (xsimt (θ))
θprior − θ

′  W 0
0 Ω (θprior)−1

 m (xt)−m (xsimt (θ))
θprior − θ

 .

(B.22)
This approach only requires us to specify the first two moments of the prior distribution
of parameters, but not the whole distribution. Thus, given the natural bounds on some
parameters, it can be interpreted as using a (truncated) normal distribution. The natural
parameter bounds are imposed during estimation by using a logistic/log transformation to
transform bounded parameters into unbounded ones.

Table B.1: Prior Distributions of Estimated Structural Parameters

Parameter Description Mean Var.
φc Consumption habits 0.70 2
σl Wealth effect labor supply 1.00 1
θw Calvo parameter wages 0.50 0.4
χw Wage indexing 0.50 2
θp Calvo parameter prices 0.5 0.4
χp Price indexing 0.50 2
ρR Interest smoothing 0.5 0.5
φRy Output feedback Taylor rule 0.50 0.5
φRπ Inflation feedback Taylor rule 1.50 6
γ Labor disutility parameter 9.00 ∞
δ2/δ1 Elasticity of capital utilization 0.15 4
κ Capital adjustments costs 7.00 40
σme Measurement error on wages -7.13 1

Notes: The table shows the prior mean and variance for the respective parameters used in the SMM estimation.
A variance of infinity indicates the use of a flat prior.

We generally use relatively uninformative priors as shown in Table B.1. To get a feeling
about the shape of the prior distributions, Figure B.1 compares the prior for the Calvo
parameter θp used in the present study to the one in Smets and Wouters (2007). While they
use a beta prior with mean 0.5 and standard deviation of 0.15, we use a prior mean of 0.5 and
a prior variance 0.4. Given that the parameter is bounded to the range [0, 1], this corresponds
to a truncated normal distribution with mean 0.5 and standard deviation 0.2768.8 As can be
seen, the priors used in our study are considerably flatter and less informative than the ones
typically used in full information estimation.

8The mean and the variance of a normal distribution with mean µ and standard deviation σ truncated to
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Figure B.1: Exemplary comparison between the prior used for the Calvo parameter θp in
this study (truncated normal) and the beta prior used in Smets and Wouters
(2007). The beta prior has been rescaled to have the same mode as the truncated
normal.

The simulation proceeds as follows. Starting at the deterministic steady state, we simulate
the model for 3200 quarters using shocks drawn from the estimated shock distributions. To
assure non-explosive behavior of the simulations, we use the pruning algorithm of Andreasen
et al. (2013). We discard the first 1500 quarters as a burn-in in order to reach the ergodic
distribution. We then use the remaining 1700 quarters to compute the respective moments.
The results are robust to using a longer burn-in period. The choice of using ten times the
length of the original data sample (i.e., a = 10) to compute the moments is motivated by the
simulations in Ruge-Murcia (2012), who finds this choice to deliver a good balance between
the precision of the estimates and computation time.

the interval [a, b] is given by

E (X|a < X < b) = µ+
φ
(
a−µ
σ

)
− φ

(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)σ
V ar (X|a < X < b) = σ2

1 +
a−µ
σ φ

(
a−µ
σ

)
− b−µ

σ φ
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) −

 φ
(
a−µ
σ

)
− φ

(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)
2
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B.7 Impulse Responses

The nonlinearity of our model complicates the computation of impulse responses compared to
linear models. We follow Fernández-Villaverde et al. (2011) and generate impulse responses
as the response to a two standard deviation shock to uncertainty at the ergodic mean in the
absence of shocks/stochastic steady state.9 First, we simulate the model for 25,000 quarters
without shocks starting from the steady state. We then check for convergence, i.e., whether
the maximum change during the last 500 periods was bigger than 1e-12. If yes, we iterate
another 5000 periods. We repeat this until convergence. To assure non-explosive behavior of
the simulations, we use the pruning algorithm of Andreasen et al. (2013). Starting at the
ergodic mean in the absence of shocks, we compute the IRFs as the percentage difference
of the respective variables between the system shocked with the respective shock and the
baseline model response, i.e., the model response without shocks.

B.8 GMM

We construct the monetary policy shocks by specifying the Federal Reserve’s policy reaction
function and estimating it by the generalized method of moments (GMM). Our approach is
similar to the one used in Clarida et al. (2000), but slightly modified to stay consistent with
our DSGE-model. Specifically, the policy reaction function to be estimated is given by

rt = ρrt−1 + (1− ρ) [r̄ + φπ (πt − π̄) + φyy
gap
t ] + εt , (B.23)

where πt is inflation with target rate π̄, ygapt is the output gap, rt−1 allows for interest
smoothing, r̄ ist the target nominal interest rate, and εt is an error term. Using the vector
of instruments zt, the set of moment conditions for our GMM estimation procedure can be
written as

E [{rt − ρrt−1 − α− βπt − γygapt } zt] = 0 (B.24)

where α = (1− ρ) (r̄ + φππ̄) collects all constant terms, β = (1− ρ)φπ, and γ = (1− ρ)φy.
Hence, we regress the average effective Federal Funds Rate in the first month of the quarter

on the lagged FFR, the inflation rate, and the output gap, where all rates are annualized.
The set of instruments includes four lags of the FFR, the inflation rate, the output gap,
commodity price inflation, money growth, and the interest term spread. Because we are only
interested in the residuals of the policy reaction function ε̂t, we do not need to separately
identify the target nominal rate r̄ and target inflation π̄.

Table B.2 presents the estimation results, which are all in the range typically reported in
9See Born and Pfeifer (2014) for details.

15



Table B.2: GMM Estimation of Taylor Rule

Coefficient Mean Std. Error t-Statistic Prob.
ρ 0.902 0.019 47.728 0.000
α 0.000 0.000 0.837 0.404
β 0.127 0.030 4.218 0.000
γ 0.071 0.008 9.311 0.000
R-squared 0.898 Mean dependent var 0.0150
Adjusted R-squared 0.897 Sum squared resid 0.002
S.E. of regression 0.003 J-statistic 15.730
Durbin-Watson stat 2.508 pval(J-statistic) 0.785

Note: GMM estimation using EViews; estimation weighting matrix: HAC (Bartlett kernel, Newey-West fixed
bandwidth = 5.0000); standard errors & covariance computed using estimation weighting matrix.

the literature. There is evidence of interest smoothing with ρ = 0.902. The point estimates
of the feedback parameters are φπ = 1.296 and φy = 0.725. The test of overidentifying
restrictions shows that the model cannot be rejected at conventional significance levels.

C Diagnostics

C.1 Testing for Heteroskedasticity

Table C.1 presents evidence of the need to model time-varying volatility. Despite our relatively
short sample size and the low power of tests for heteroskedasticity, the null hypothesis of
homoskedastic shocks can be rejected at the 10% level for all series except TFP. This result is
consistent with evidence that the standard deviation of structural shocks has changed over
time (see, e.g., Justiniano and Primiceri, 2008; Primiceri, 2005).

Table C.1: Tests for Heteroskedasticity

τ k τn z zI g m

White 0.000* 0.000* 0.958 0.023* 0.383 0.000*
White/Wooldridge 0.883 0.206 0.958 0.003* 0.050* 0.000*
Breusch/Pagan/Koenker 0.001* 0.003* 0.779 0.553 0.140 0.001*

Notes: Asterisks indicate significance at the 10% level. White refers to the standard White (1980)-test, WW
refers to the Wooldridge (1990)-version of this test, and BPK refers to the Breusch and Pagan (1979)/Koenker
(1981)-test.
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C.2 Convergence Diagnostics

Table (C.2) shows the results from the Geweke (1992)-convergence diagnostics that compares
the means of the first 20% of draws with that of the last 50% of the draws. In general, all
MCMC chains have converged to their stationary distribution as indicated by the p-values of
the χ2-test for equal means. Figures C.1 to C.6 show the corresponding mean plots.

Table C.2: Geweke (1992) Convergence Diagnostics

Parameter 4% taper 8% taper 15% taper 4% taper 8% taper 15% taper
Capital Tax Rates Labor Tax Rates

ρ1 0.256 0.287 0.331 0.622 0.624 0.621
ρ2 0.760 0.760 0.773 0.622 0.624 0.621
ρσ 0.896 0.904 0.906 0.387 0.403 0.382
ησ 0.127 0.121 0.091 0.943 0.943 0.934
σ̄ 0.499 0.529 0.532 0.608 0.611 0.616
φd 0.129 0.085 0.070 0.369 0.379 0.326
φy 0.414 0.434 0.482 0.882 0.878 0.872

Investment Specific Technology Government Spending
ρ1 0.078 0.109 0.113 0.179 0.182 0.183
ρ2 0.100 0.140 0.148 0.148 0.163 0.131
ρσ 0.627 0.614 0.598 0.878 0.889 0.897
ησ 0.479 0.491 0.491 0.757 0.755 0.722
σ̄ 0.721 0.712 0.674 0.969 0.969 0.968
φd 0.843 0.843 0.828
φy 0.303 0.297 0.222

Total Factor Productivity Monetary Policy Shock
ρ1 0.681 0.670 0.653 0.778 0.753 0.723
ρσ 0.217 0.243 0.258 0.785 0.781 0.759
ησ 0.047 0.029 0.011 0.130 0.101 0.048
σ̄ 0.749 0.752 0.770 0.874 0.871 0.854

Notes: Numbers are p-values of the χ2-test for equal means of the first 20% of draws and the last 50% of the
draws (after the first 6500 draws are discarded as burn-in). ρ denotes the autocorrelation coefficient(s) of the
level equation, ρσ the one of the volatility equation, σ̄ is the steady state volatility of the level shocks, ησ
denotes the standard deviation of the volatility shocks, φd is the debt feedback coefficient, and φy the output
feedback coefficient.
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(b) Mean of the parameters over time.

Figure C.1: Evolution of MCMC sampler over time for τ k.
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Figure C.2: Evolution of MCMC sampler over time for τn.
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Figure C.3: Evolution of MCMC sampler over time for z.

20



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1.2
1.4
1.6

ρ1

Draws
P

ar
. V

al
ue

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.7
−0.6
−0.5
−0.4
−0.3

ρ2

Draws

P
ar

. V
al

ue

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.8

1
ρσ

Draws

P
ar

. V
al

ue

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.2

0.4

ησ

Draws

P
ar

. V
al

ue

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−7

−6
σ

Draws

P
ar

. V
al

ue

(a) MCMC draws.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1.1
1.2
1.3
1.4
1.5

ρ1

DrawsP
ar

am
et

er
 M

ea
n

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.4

−0.2
ρ2

DrawsP
ar

am
et

er
 M

ea
n

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.8

0.9

ρσ

DrawsP
ar

am
et

er
 M

ea
n

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.3
0.4
0.5

ησ

DrawsP
ar

am
et

er
 M

ea
n

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−7

−6
σ

DrawsP
ar

am
et

er
 M

ea
n

(b) Mean of the parameters over time.

Figure C.4: Evolution of MCMC sampler over time for zI .
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Figure C.5: Evolution of MCMC sampler over time for g.
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Figure C.6: Evolution of MCMC sampler over time for m.
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C.3 Model Misspecification Diagnostics

Following Kim et al. (1998), we can test the specification of our SV-model. Using N draws
from the prediction density p (xt|xt−1; Θ), we can compute the probability that x2

t+1 will be
less or equal than the actually observed value of

(
xobst+1

)2
:

Pr
(
x2
t+1 6

(
xobst+1

)2 ∣∣∣xt ; Θ
)
' ut+1 = 1

N
Pr
(
x2
t+1 6

(
xobst+1

)2 ∣∣∣xt, σt+1|t ; Θ
)
, (C.1)

∀t = 1, . . . T − 1. If the SV-model is correctly specified, the sequence of ut converges in
distribution to i.i.d. uniform variables as the number of particles N goes to infinity (Rosenblatt,
1952). Under the null hypothesis of a correctly specified model, the ut can be transformed
to i.i.d. standard normal variables using the inverse normal CDF. Hence, we can perform a
simple test for misspecification by testing the resulting series for their normality. Figure C.7
shows the corresponding QQ-plots.
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Figure C.7: QQ-plots. From left to right and top to bottom: capital taxes, labor taxes,
TFP, investment-specific technology, monetary policy shocks, and government
spending.

Table C.3 presents the results from three commonly used normality tests. In general, a
correct specification of the model tends to not be rejected. Only for g, the Jarque-Bera and
the Shapiro-Wilk tests reject normality. However, this effect is driven by the outliers visible in
the center left panel of Figure C.7. In contrast, when shutting off the time-varying volatility

24



and setting the volatility to its unconditional mean, the specification is generally rejected
(results are not shown here).

Table C.3: Tests for Model Misspecification

JB KS SW
Capital Tax Rate τk 0.340 0.900 0.385
Labor Tax Rate τn 0.164 0.802 0.266
Government Spending g 0.041* 0.420 0.003*
Monetary Policy m 0.500 0.214 0.365
TFP z 0.444 0.789 0.179
Invest.-Spec. Technology zI 0.218 0.345 0.399

Note: The table displays p-values of model-misspecification tests for the exogenous processes estimated in the
first stage. Asterisks indicate significance at the 5% level. JB refers to the Jarque and Bera (1987)-test, KS
refers to the Kolmogorov (1933)/Smirnov (1948)-test, and SW refers to the Shapiro and Wilk (1965)-test.

D Supplementary Tables and Figures

D.1 Baseline Model Without Stochastic Volatility

Table D.1: Simulated and empirical moments for the model without time-varying volatility

Model Data Model Data Model Data Model Data Model Data
σ(xt) σxt/σyt ρ(xt, yt) ρ(xt, xt−1) ρ(xt, xt−2)

∆y 0.50% 0.85% 1.00 1.00 1.00 1.00 0.60 0.29 0.30 0.24
∆c 0.43% 0.55% 0.86 0.64 0.77 0.58 0.48 0.43 0.11 0.22
∆i 1.65% 2.44% 3.29 2.86 0.80 0.69 0.74 0.62 0.45 0.46
π 0.53% 0.62% 1.06 0.72 -0.26 -0.20 0.83 0.88 0.58 0.84

∆w 0.17% 0.64% 0.33 0.75 0.28 -0.00 0.43 0.03 0.22 0.03
r 0.48% 0.94% 0.96 1.10 -0.66 -0.11 0.92 0.94 0.78 0.89
l 1.74% 1.64% 3.47 1.91 0.06 0.33 0.83 0.93 0.65 0.82

Notes: Time Series xt are output (yt), consumption (ct), investment (it), inflation (πt), the real wage (wt),
the nominal interest rate (Rt), and hours worked lt. Lowercase letters denotes variables that are logged. The
columns show the standard deviation σ(xt), the relative standard deviation compared to output volatility
σxt/σyt , the correlation with output ρ(xt, yt), and the first two autocorrelations ρ(xt, xt−1) and ρ(xt, xt−2).
Some of the target moments are transformed to correlations for better interpretation. The relative standard
deviations with respect to the standard deviation of output are only implicitly targeted through the standard
deviations of the respective series.
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D.2 Overview about the Individual Shocks

D.2.1 Level Shocks
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Figure D.1: The columns show the IRFs for output, consumption, investment, and inflation
to a shock to the variable displayed in the first row. The capital and labor
shocks are 1 percentage point cuts to the respective rates, while the government
spending shock amounts to 1% of GDP. The monetary policy shocks of 25 basis
points corresponds to a 1% exogenous cut in the Federal Funds Rate. The
technology shocks correspond to one standard deviation shocks.
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D.2.2 Risk Shocks

5 10 15 20 25

20
40
60
80

στ k

5 10 15 20 25
−0.02

−0.01

0

Output

5 10 15 20 25
−0.015

−0.01
−0.005

0

Consumption

5 10 15 20 25

−0.04
−0.02

0
0.02

Investment

5 10 15 20 25

0

0.005

0.01

Inflation

5 10 15 20 25

−0.004

−0.002

0
Capital

5 10 15 20 25

20
60

100

στ n

5 10 15 20 25
−0.004
−0.002

0

Output

5 10 15 20 25
−0.004

−0.002

0

Consumption

5 10 15 20 25
−0.01

−0.005
0

0.005

Investment

5 10 15 20 25

0
0.001
0.002

Inflation

5 10 15 20 25
−0.001

−0.0005

0
Capital

5 10 15 20 25

20
40
60

σg

5 10 15 20 25

−0.0002
−0.0001

0

Output

5 10 15 20 25
−0.0002

−0.0001

0

Consumption

5 10 15 20 25

−0.0004
−0.0002

0
0.0002

Investment

5 10 15 20 25

0
2e−05
4e−05
6e−05

Inflation

5 10 15 20 25
−4e−05

−2e−05

Capital

5 10 15 20 25

20
40
60

σm

5 10 15 20 25
−0.04

−0.02

0

Output

5 10 15 20 25

−0.03
−0.02
−0.01

0
Consumption

5 10 15 20 25

−0.08
−0.05
−0.02

0.01
0.04

Investment

5 10 15 20 25

0

0.005

0.01

Inflation

5 10 15 20 25

−0.012
−0.008
−0.004

Capital

5 10 15 20 25

20
40
60

σz

5 10 15 20 25
−0.01

−0.005

0

Output

5 10 15 20 25
−0.008

−0.004

0

Consumption

5 10 15 20 25

−0.02
−0.01

0
0.01

Investment

5 10 15 20 25

0
0.002
0.004
0.006

Inflation

5 10 15 20 25
−0.002

−0.001

Capital

5 10 15 20 25

20

40

60

σz
I

5 10 15 20 25
−0.0002

0.0002

0.0006

Output

5 10 15 20 25

−0.0002
0

0.0002

Consumption

5 10 15 20 25

0
0.001
0.002
0.003

Investment

5 10 15 20 25
0

0.0001
0.0002
0.0003

Inflation

5 10 15 20 25
5e−05

0.0001

0.00015

Capital

Figure D.2: The columns show the IRFs for output, consumption, investment, and inflation
to a two-standard deviation shock to the volatility displayed in the first row.
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D.3 Parameter Perturbations
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Figure D.3: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed and the
green dashed dotted line indicate a higher and lower habit parameter φc.
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Figure D.4: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed and the
green dashed dotted line indicate a higher and lower inverse Frisch elasticity
parameter σl.

29



5 10 15 20 25

20

40

60

80

Cap. Tax. Vol.

 

 
Baseline
σ

G
=1

5 10 15 20 25

20

60

100

Lab. Tax. Vol.

5 10 15 20 25

20

40

60

Gov. Spend. Vol.

5 10 15 20 25

20

40

60

Policy Rate Vol.

5 10 15 20 25
−0.5

0

0.5
TFP Vol.

5 10 15 20 25
−0.5

0

0.5
Invest. Spec. Vol.

5 10 15 20 25

−0.06

−0.04

−0.02

0

Output

5 10 15 20 25

−0.04

−0.02

0

Consumption

5 10 15 20 25

−0.2

−0.1

0

Investment

5 10 15 20 25

−0.04

−0.02

0

0.02

Cap. Serv.

5 10 15 20 25

−0.06

−0.04

−0.02

0

Hours

5 10 15 20 25

−0.01

−0.005

0

Real Wage

5 10 15 20 25

−0.02

0

0.02

Rental Rate

5 10 15 20 25
−0.01

0

0.01

Policy Rate

5 10 15 20 25

0

0.01

0.02

Inflation

5 10 15 20 25

−0.01

0

0.01

Real Interest Rate

Figure D.5: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration with preferences close to the
GHH case, while the red dashed line indicates King-Plosser-Rebelo preferences.
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Figure D.6: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed line
indicates lower depreciation rate for tax purposes δτ .
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Figure D.7: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed and
the green dashed dotted line indicate higher and lower investment adjustment
costs.
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Figure D.8: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed and the
green dashed dotted line indicate higher and lower capital utilization costs.
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Figure D.9: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed and
the green dashed dotted line indicate a lower and higher frequency of price
adjustments θp.
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Figure D.10: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration, while the red dashed
and the green dashed dotted line indicate a lower and higher frequency of
wage adjustments θw.
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Figure D.11: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration with indexing, while
the red dashed line indicates the absence of wage and price indexing.
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Figure D.12: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration with 10% steady state
markups, while the red dashed line indicates a markup of 5%.
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Figure D.13: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration, while the red dashed
and the green dashed dotted line indicate a lower and higher inflation feedback
in the Taylor Rule φRπ.
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Figure D.14: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration, while the red dashed
and the green dashed dotted line indicate a lower and higher output feedback
in the Taylor Rule φRy.
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Figure D.15: The figure displays the IRFs to a two-standard deviation joint policy risk shock.
The blue solid line is the benchmark calibration, while the red dashed and the
green dashed dotted line indicate higher and lower interest rate smoothing.
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Figure D.16: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration, while the red dashed
line shows the IRFs when fiscal feedback is shut off.
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Figure D.17: The figure displays the IRFs to a two-standard deviation joint policy risk
shock. The blue solid line is the benchmark calibration, while the red dashed
line shows the IRFs using δ2/δ1 = 0.001, κ = 1, χp = χw = 0, φRy = 0.1,
ρR = 0.9.
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