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Abstract

The paper discusses tests for the cointegration rank of integrated vector autoregres-
sions when the series are recursively adjusted for deterministic components. To this
end, the asymptotic properties of recursive, or adaptive, procedures for the removal
of general additive deterministic components are analyzed in two different, comple-
mentary, situations. When the stochastic component of the examined time series
is weakly stationary (as would be the equilibrium errors), the effect of recursive
adjustment vanishes with increasing sample size. When the suitably normalized
stochastic component converges weakly to some limiting continuous-time process
with integrable paths (as would be the case with the common stochastic trends),
recursive adjustment has a permanent effect even asymptotically: the normalized
recursively adjusted process converges weakly to a recursively adjusted version of
the limiting process. The null limiting distributions of the cointegration rank tests
can be expressed in terms of recursively adjusted Brownian motions. Moreover, the
finite-sample properties of the cointegration rank tests with recursive adjustment
are examined in cases of empirical relevance: the considered deterministic compo-
nents are a constant, and a constant and a linear trend, respectively. Compared
to the likelihood ratio tests or the tests with GLS adjustment, improvements in
terms of empirical rejection frequencies under the null are found in finite samples;
improvements are found under the alternative as well, with the likelihood ratio test
performing increasingly better as the magnitude of the initial condition increases.
Regarding rank selection, a very simple combination of the three testing procedures
with different adjustments performs best.
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1 Introduction

The question of how to account for deterministic components in the data is perhaps as old

as time series econometrics itself. The more popular method to separate the stochastic

component from the deterministic one appears to still be adjustment using ordinary least

squares [OLS], even in cases where generalized least squares [GLS] may be the efficient

solution.

Recursive removal of deterministic trend components, or recursive adjustment,1 was

introduced as an alternative by So and Shin (1999) for demeaning in the context of

estimating of covariances and autoregressive parameters. Recursive demeaning amounts

to subtracting from each observation yt the mean yt = t−1
∑t

j=1 yj; being adaptive, it

has e.g. in autoregressive models the advantage of preserving the martingale difference

property of the product of regressor and disturbance, unlike the usual OLS demeaning.

This way, the bias, if not the variance, of statistics computed with recursive demeaning

can be reduced. See So and Shin (1999) for details. The bias reduction is very useful

for working with possibly integrated time series. In this context, recursive demeaning

has been used with the Dickey-Fuller test for a unit root by Shin and So (2001); Taylor

(2002) accounts for a linear trend in a recursive manner in the more general setup of

seasonal unit root tests; see also Rodrigues (2006) for unit root tests with recursive trend

removal and Kuzin (2005) for the issue of recursive deseasonalizing. Since the estimation

bias of the autoregressive parameters—which is substantial in the case of autoregressive

roots close to unity—is reduced, more powerful unit root tests can be obtained. This is

documented by Leybourne et al. (2005) who show that tests using recursive adjustment

are comparable with unit root tests using local-to-unity GLS adjustment (Elliott et al.,

1996). At the same time, the recursive procedure keeps the simplicity inherent to the OLS

approach – recall that GLS adjustment requires specification of fine-tuning parameters.

But unit root testing is not the only field of application of recursive adjustment: Sul et al.

(2005) use recursive demeaning to reduce the bias of autoregressive estimates for long-run

variance estimation with prewhitening.

In the context of multivariate nonstationary models, it is only natural to ask whether

recursive adjustment brings advantages over alternative adjustment methods when testing

for (no) cointegration or for the cointegration rank.

So this paper’s contribution is twofold. First, it examines recursive adjustment for

general deterministic components. This is a necessary step in analyzing cointegration

rank tests with recursive adjustment; but the topic is of its own interest and we treat

it under more general conditions than required for the analysis of vector autoregressive

[VAR] processes. Concretely, two possible situations for the stochastic component are

1The term “recursive detrending” has been used to denote the recursive removal of deterministic
components as well; “recursive adjustment” is preferred here, as it leaves little space for confusion with
the particular case of removing a linear trend.
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distinguished. In the first, weak stationarity is assumed – a condition satisfied, for in-

stance, by the equilibrium error of a cointegrated VAR. In the second, nonstationary,

case, a limiting continuous-time process with integrable paths should exist when a suit-

able normalization is used; this applies to the stochastic trends of the VAR in question.

But nonstationary fractionally integrated processes can also be accommodated by this

assumption, the weak limit being a fractional Brownian motion. The effect on the recur-

sively adjusted series is different in the two cases, and precise results in this direction are

derived. In the stationary case, the effect vanishes as the time index grows to infinity,

but remains non-negligible at the beginning of the sample. In the nonstationary case, the

limiting behavior is a continuous-time recursively adjusted process.

The second contribution is to use recursive adjustment when dealing with the deter-

ministic component of cointegrated VARs for the purpose of testing hypotheses about

the cointegration rank. The procedure for estimating the cointegration rank of integrated

VARs proposed by Johansen (1995) has proved to be an extremely valuable tool in speci-

fying cointegrated VAR models for subsequent inference.2 But when the data generating

process exhibits deterministic components, there is no gold standard for how to remove

them from the data. Johansen (1995) suggests to remain in the likelihood ratio [LR] frame-

work; Saikkonen and Lütkepohl (2000a), Lütkepohl and Saikkonen (2000), and Saikkonen

and Lütkepohl (2000b) on the other hand suggest to remove the constant or the linear

trend by GLS adjustment prior to applying the LR or Lagrange multiplier tests. Neither

procedure uniformly dominates the other. Since the LR rank test can be seen as a gener-

alization of the Dickey-Fuller test, it is expected that recursive adjustment performs well

in the multivariate setting, too. The paper examines the asymptotic and small-sample

properties of the LR-type rank test applied to recursively adjusted data. The asymptotic

distributions depend, not surprisingly, on recursively adjusted Wiener processes. In small

samples, recursive adjustment is found to perform better in most cases in terms of em-

pirical rejection frequencies under both the null and the alternative; the initial condition

also plays a role. When focusing on the selection of a cointegration rank rather than on

the test of a specific null (e.g. no cointegration), a simple combination of the tests with

recursive, OLS-type, and GLS adjustment appears to be the better choice.

Before proceeding to the main part of the paper, let us introduce some notation. Let

boldface symbols denote column vectors, “⇒” stand for weak convergence in a space of

càdlàg vector functions defined on [0, 1], space endowed with a suitable norm, and “I(0)”

and “I(1)” stand for integration of order 0 and 1, respectively. Furthermore, ‖·‖ denotes

the Euclidean vector norm and the corresponding induced matrix norm, and the Landau

symbols O(·) and Op(·) have their usual meaning. Let diag a = diag (a1, . . . , am)′ denote

an m×m diagonal matrix having the elements ai on the main diagonal. Finally, C∗ is a

2Sequential testing is not the only way to infer about the cointegration rank: Poskitt and Lütkepohl
(1995) suggest using specific information criteria. See also the more recent Cheng and Phillips (2009).
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constant whose value may differ at different occurrences.

2 Model and test

2.1 Assumptions

Let the observed series be generated according to

yt = xt + dt, t = 1, . . . , T, (1)

where xt is a K-dimensional integrated VAR(p + 1) process, possibly cointegrated, and

the vector dt = (d1t, . . . , dKt)
′ is a deterministic function of t.

Let the error-correction representation of xt be

∆xt = Πxt−1 +

p∑
j=1

Aj∆xt−j + εt, (2)

where x0 is fixed and the innovations εt are uncorrelated. When Π = 0, xt is integrated,

and, when Π has full rank, xt is stationary. When r = rank Π is nonzero, but less than K,

the matrix can be decomposed as Π = αβ′, α and β being both K × r matrices. Denote

by A⊥ the orthogonal complement w.r.t. RK of a matrix A with K rows and 0 < r < K

columns. The following assumption ensures that xt is I(1) with cointegration rank r.

Assumption 1 Let the characteristic equation

det

(
(1− z)IK − Πz −

p∑
j=1

Aj(1− z)zj

)
= 0

have no roots outside the unit circle and K − r roots on the unit circle, and, if r > 0, let

the matrix α′⊥

(
IK −

∑p
j=1Aj

)
β⊥ have full rank.

The innovations εt are taken to satisfy conditions standard in the cointegration liter-

ature:

Assumption 2 Let εt be either an iid sequence with finite variance or a weakly stationary

martingale difference sequence with uniformly bounded 4th-order moments. Denote by Σε

the covariance matrix of εt, and let Σε be positive definite.

The Granger representation theorem implies for xt,

xt = Ξ
t∑

j=1

εj +Op(1), (3)
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where the matrix Ξ is given as Ξ = β⊥

(
α′⊥

(
IK −

∑p
j=1Aj

)
β⊥

)−1
α′⊥. Given Assump-

tion 2, it follows immediately that

1√
T

x[sT ] ⇒ B(s),

where the covariance matrix of the K-dimensional Brownian motion B(s) is ΞΣεΞ
′ and

satisfies rank ΞΣεΞ
′ = rank Ξ = K − r.

In what concerns the stochastic part of the model, the assumptions are in fact quite

standard. See Johansen (1995) and Lütkepohl (2005). It is the deterministic component

that receives more attention in this paper.

Let each of the K deterministic components dit be a linear combination of simple trend

functions, which are the same for all K elements of yt,

dit =
L∑
l=1

cilfl(t). (4)

Further, let the trend functions fl(·) be known. Naturally, the coefficients may differ

across the K elements of yt; in particular, some may be 0, thus accommodating the

situation where some of the trend functions are specific to certain elements of yt.

For the asymptotic analysis, an assumption about the behavior of the trend function

f(t) as T grows to infinity is required.

Assumption 3 Let DT = diag (Tα1 , . . . , TαL) for some real constants αl, l = 1, . . . , L;

the trend functions fl(t), l = 1, . . . , L, are linearly independent and satisfy

f(t) = DT τ

(
t

T

)
, t = 1, . . . , T,

where τ (s) = (τ1(s), . . . , τL(s))′ is a deterministic vector function on [0, 1], piecewise

smooth with bounded derivative such that
∫ s
0
τ (r)τ (r)′dr has full rank ∀0 < s ≤ 1.

The condition of a full rank in the limit is not equivalent to the linear independence

of the trend functions and is thus required. The assumption allows e.g. for a constant

(where α1 = 0 and τ1 = 1), for polynomial trends (where α1 = k and τ1 = sk), or for

smooth transitions (where τ contains so-called sigmoid functions such as the hyperbolic

tangent). Piecewise linear trends or polynomial splines are covered by the assumption as

well. Assume at this point that a constant is always included in the set of deterministic

functions: a linear trend, for instance, is not plausible at all without a nonzero intercept.3

Actually, a quadratic trend would not be plausible without a linear one either, and so on.

3In the direction of the stochastic trends, the constant is not distinguishable from the initial value;
adjusting for deterministics with a constant included, as assumed, renders the statistics pivotal.
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Up to the mentioned inclusion of a constant, we leave the choice of (not) considering all

powers in a higher-order polynomial trend function to the practitioner: the assumption

encompasses both restricted and unrestricted cases, and allows one to work with recursive

adjustment as one considers fit for the data set at hand.

Rodrigues (2013) analyzes unit root tests with recursive adjustment for intercept,

trend, and breaks. Dealing with structural breaks at a fixed position in the sample

is easily accommodated via interaction terms involving the usual dummy variables. In

terms of Assumption 3, a break behaves almost like a constant, having α1 = 0; and

τ1 = 1(s > λ) or τ1 = 1(s < λ), with 1(·) the indicator function, for some (relative) break

time 0 < λ < 1.

In the presence of breaks, there actually is an interesting computational aspect to

the recursive adjustment procedure: some algebra shows that recursively adjusting (as

described in the following subsection) for the trend components and their interactions with

a dummy variable is equivalent to simply adjusting the pre- and post-break subsamples

separately whenever all trend components exhibit a break at the same time. This gives

a straightforward solution to an issue with Assumption 3, which is not fulfilled by step

dummies defined as τ1 = 1(s > λ) violating the full-rank requirement on
∫ s
0
τ (r)τ (r)′dr

for s < λ. Another way of dealing with the issue is to use dummies defined as τ1 = 1(s <

λ).

The assumption implies furthermore that the break time is known; but it is a plausible

conjecture that the break time can be endogenized in a straightforward manner. In the

context of unit root tests, for instance, breaks at unknown time can be accounted for by

using inf-type statistics as those introduced by Zivot and Andrews (1992); see Lütkepohl

et al. (2004) for the corresponding discussion of cointegration-rank tests.4

Note that Assumption 3 does not directly cover seasonal deterministics; but the work

of Taylor (2002) and Kuzin (2005) indicates how seasonal components can be reduced to

the corresponding nonseasonal case. Finally, there are cases where
∫ s
0
τ (r)τ (r)′dr is not

a proper integral and different methods apply; see the discussion following Proposition 1.

2.2 Recursive adjustment

So far, only recursive demeaning and detrending have been considered in the literature.

But the extension to general additive trend components is straightforward. The procedure

is OLS-based as well, but the unknown coefficients are not estimated from the entire

sample; rather, one estimates for each t the unknown trend parameters based on the

sample 1, . . . , t, and uses them subsequently to adjust the observation yt. Recursive

adjustment of a multivariate time series is understood to be element-wise.

4Establishing rigorous asymptotics for inf-type statistics with recursive adjustment for structural
breaks is beyond the scope of this paper. See Rodrigues (2013) for the case of unit root tests and the
problems associated with this procedure.
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Denoting by C the matrix of coefficients {cil}i=1,...,K,l=1,...,L and by f(t) the vector

(f1(t), . . . , fL(t))′, one has in matrix notation

dt = Cf(t).

Let us now turn our attention to the corresponding procedures of recursively adjusting the

series. Formally, there are T − L+ 1 least-squares regressions, one for each t = L, . . . , T :

yj = Ĉ(t)f(j) + x̂
(t)
j , j = 1, . . . , t,

giving

Ĉ(t) =

( t∑
j=1

f(j)f(j)′

)−1( t∑
j=1

f(j)y′j

)′ .
Denote by ỹt the recursively adjusted series, for which the above definition delivers

ỹt = yt −

( t∑
j=1

f(j)f(j)′

)−1( t∑
j=1

f(j)y′j

)′ f(t) (5)

for t = L, . . . , T . At the beginning of the sample, one obtains ỹL = 0; set ỹt = 0 as well

for t = 1, . . . , L− 1.

Fitting an OLS regression for each t between L and T may be computationally more

expensive than simple OLS adjustment; but simple closed-form expressions for ỹt are

available e.g. in the case of recursive demeaning or recursive detrending (see Example 3),

and one can make use of the Sherman-Morrisson formula to simplify the computation of

Ĉ(t) by updating Ĉ(t−1).

Equation (5) implies for t ≥ L that

ỹt = xt −

( t∑
j=1

f(j)f(j)′

)−1( t∑
j=1

f(j)x′j

)′ f(t),
also, d̃t = 0 for all t. More generally, recursive adjustment is—just like the usual OLS

procedure—linear:

Aỹt = Ãyt (6)

for conformable matrices A, so recursively adjusting yt leaves the potential cointegra-

tion structure unaffected. Concretely, if a′xt is an I(0) linear combination, ã′xt behaves

asymptotically stationary, cf. Proposition 1 below, and, as a consequence of Equation (6),

so will a′x̃t. If on the other hand a′xt is an I(1) linear combination, a′x̃t is stochastically

trending too.
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2.3 The test with recursive adjustment

The invariance of the cointegration property to recursive adjustment suggests that such

adjustment can be used with Johansen’s (1995) test for the cointegration rank. Even

when the innovations are Gaussian, the result is not an LR test as the trend parameters

are not concentrated out of the likelihood function.

Without deterministics, the LR test can be interpreted as a problem of canonical

correlations of the differences ∆yt and lagged levels yt−1 (with prewhitening if short-run

dynamics are to be accounted for). This subsection thus discusses how yt−1 and ∆yt can

be adjusted for their respective deterministic components.

Let Recτ denote the LR-type test statistic with recursive adjustment. To compute

it, the lagged levels yt−1 are dealt with as indicated by Equation (5), delivering the

recursively adjusted ỹt−1.

Should the deterministic component only include an intercept, for instance, the dif-

ferenced series ∆yt do not require adjustment at all. But this is not the case in general;

moreover, the deterministic component of the differenced series, dt − dt−1, is typically

different from the deterministic component of the levels; see the following lemma.

Lemma 1 Denote by S the set of points where τ or its derivative have jump discontinu-

ities. Let τ̇ (s) =
(
∂f1
∂s
, . . . , ∂fL

∂s

)′
for s ∈ [0, 1] \ S, and let for convenience f(−1) = f(0).

Under the conditions of Assumption 3, it holds true that

sup
s∈[0,1]\S

∣∣TD−1T (f([sT ])− f([sT ]− 1))− τ̇ (s)
∣∣→ 0 .

Proof: Obvious and omitted.

The discontinuity points in S correspond to additive outliers in the differences. Their

effect on the test statistics studied here depends on their magnitude: a differenced shift

in the mean is asymptotically negligible; but a break in the coefficient of a linear trend

without a simultaneous shift in the mean canceling the discontinuity is not, and has to

be taken into account when adjusting the differences by means of an impulse dummy. A

discontinuity of such magnitude is not plausible, though. So, also considering the situation

of a constant differenced away, let us convene that the vector τ̇ (s) does not contain zero

elements or “outliers”.5 The conditions of the lemma exclude for instance trend functions

such as tp for 0 < p < 1, since its derivative has a pole; the reason for the exclusion is

technical, as unbounded derivatives of τ might lead to indeterminate forms under the

supremum and the result would not follow immediately.

5Alternatively, one could have required the differenced deterministic component ∆dt to obey As-
sumption 3 without the smoothness condition; the levels dt would have had as limiting functions the
corresponding indefinite integrals and potentially an additional constant. Again, special care would have
been required when modeling discontinuities in the levels.
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Lemma 1 makes clear that the differences ∆yt require appropriate adjustment, except

for the case of a (piecewise) constant deterministic component. In the context of recursive

detrending, Rodrigues (2006) lists three possibilities to do so. Two adjust the levels yt

and the lagged levels yt−1 separately, and the sample mean of the differences ∆yt is

subtracted from the adjusted levels. This is equivalent to OLS adjusting the differences

∆yt directly. The third, put forward by Taylor (2002), ultimately amounts to using

differenced adjusted series. One may also consider recursively adjusting the differences for

the differenced deterministics. Either way, the interaction of the adjustment procedures

for the the differences and the lagged levels leaves non-negligible terms, as can be seen in

the following example.

Example 1 Consider for simplicity the univariate case yt = c0 + c1t+ xt where xt is an

integrated process. The recursively detrended levels are given by

ỹt = xt +
2

t

t∑
j=1

xj −
6

t(t+ 1)

t∑
j=1

j xj,

and their differences are given by

∆ỹt = ∆xt −
4t− 2

t(t+ 1)
xt −

2

t(t− 1)

t−1∑
j=1

xj +
12

t(t2 − 1)

t−1∑
j=1

j xj.

For comparison, the recursively demeaned differences are given by

∆̃yt = ∆xt −
1

t
xt.

With xt an integrated process, it follows immediately that e.g. 1
t
xt = Op(t

−0.5), and the

other terms such as 2
t(t−1)

∑t−1
j=1 xj can be shown to have the same order. Examine now the

sample cross-product moment of ỹt−1 and ∆̃yt (or ∆ỹt), as it would appear in a Dickey-

Fuller type statistic: while the terms resulting from the interaction of the adjustment

procedures, e.g.
∑T

t=2
1
t
xtx̃t−1, can be shown to be nonnegligible, establishing their limiting

behavior is not without challenge.

We opt for OLS adjustment of the differenced series for their own deterministic compo-

nent. This presents two advantages over the alternatives. On the one hand, the complexity

of the interaction terms is kept under control; see Proposition 3 for the consequences in

the limit. On the other hand, it makes lag augmentation easier to deal with from a techni-

cal point of view (uniformity in t of the adjustment term does have its advantages), since

it is not clear whether simply lagging e.g. recursively adjusted differences would lead to a

pivotal test statistic, or whether different adjustment schemes for each lagged difference

are not necessary after all.
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Denote thus by ∆̆yt the series ∆yt with OLS adjustment, i.e.

∆̆yt = ∆yt −

(
T∑
t=2

∆yt∆f(t)′

)(
T∑
t=2

∆f(t)∆f(t)′

)−1
∆f(t) , (7)

where ∆f(t) contains only the deterministic components relevant to the differences. Al-

though
√
T -consistent, this step does affect the limiting distributions; see Proposition 3

below.

After adjusting the levels and the differences for their specific deterministic compo-

nents, one regresses ∆̆yt from (7) and ỹt−1 from (5) on the lags z̆t−1 =

((
∆̆yt−1

)′
, . . . ,

(
∆̆yt−p

)′)′
to obtain the prewhitened residuals r0t and r1t. Using them, the usual moment matrices

are built,

Sij =
1

T

T∑
t=p+1

ritr
′
jt,

i, j = 0, 1. Denote by λ̂1, . . . , λ̂K the decreasingly ordered solutions of the equation of real

variable λ ∣∣λS11 − S10S
−1
00 S01

∣∣ = 0,

i.e. the eigenvalues of S−111 S10S
−1
00 S01. The (trace) Recτ statistic is

Recτ (r) = T

K∑
i=r+1

λ̂i. (8)

Alternatively, one could use the maximum eigenvalue test,

Recτmax(r) = λ̂r+1. (9)

The following section discusses the limiting behavior of the trace and max eigenvalue

statistics. Along the way, we analyze the effect of recursive adjustment on stationary

series (as would be the equilibrium error under nonzero cointegration rank) as well as on

nonstationary series (as would be the stochastic trends).

3 Main results

We begin by examining the effect of recursive removal of the deterministic trend compo-

nent dt from the observed series. It is found to depend on the properties of the stochastic

component. We thus distinguish two different situations. First, we work with weakly

stationary processes. Second, the suitably normalized process is taken to possess a lim-

iting continuous-time process with a.s. integrable paths. Based on these results, we then

provide the asymptotics for the cointegration rank tests with recursive adjustment.
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3.1 Recursive adjustment under stationarity

Let us first deal with the case of stationarity. The sequence of equilibrium errors falls

under this category, being in fact I(0) in our model. One can establish the following result

extending the work of So and Shin (1999); while it is formulated slightly more generally

than required, the additional cost in terms of proof complexity is negligible.

Proposition 1 Let Assumptions 3 hold true and assume wt to be some zero-mean, weakly

stationary, process with autocovariance matrices Γh such that, as T → ∞, φ(T ) =
1
T

∑T
h=1 ‖Γh‖ → 0. Then ∃C∗ ∈ R+ not depending on t such that

E
(
‖w̃t −wt‖2

)
≤ C∗ φ(t).

Proof: See the Appendix.

The assumptions of the proposition allow for what is usually understood under short

memory, and apply thus (even if indirectly) to wt = β′xt−1, i.e. the equilibrium errors.

But departures from weak stationarity could be allowed for, as long as the variance of

the sample mean vanishes as T → ∞, cf. Phillips (1987); the topic is not pursued here,

however, just as the case of processes with infinite variance is not addressed in this sub-

section.6 Note that weakly stationary processes with long-memory are covered as well;

this would allow one to use recursive adjustment for processes fractionally integrated of

order d, as long as d < 0.5.

Remark 1 For fixed t at the beginning of the sample, the recursive adjustment scheme

does not consistently filter the stochastic component, but only unbiasedly; this is no sur-

prise as it only uses the limited information available at time t. As t grows to infinity

(e.g. t = [sT ] for some fixed 0 < s < 1), one has that w̃t−wt
p→ 0. Chebyshev’s inequality

indicates, in a perhaps less rigorous notation, that w̃t−wt = Op

(√
φ(t)

)
uniformly in t.

Remark 2 The result requires in any case finiteness of the expectation of wt: it does not

hold if the sample mean is not consistent, even for an iid sequence. The rate at which

w̃t converges to wt is related to the convergence rate of the sample mean w, and, more

generally, to the amount of serial dependence of the series wt.

If αl is negative for some 1 ≤ l ≤ L, the trend function fl(t) vanishes as T → ∞.

Such trend functions often do not affect the asymptotic behavior of statistics based on the

data without accounting for this trend component (see also Example 2 below). In small

samples, however, even such trend functions can make a difference, so it is advisable to take

6In the stationary case with infinite variances, the OLS estimators of the coefficients cil may be
inconsistent and Least Absolute Deviations fitting called for; see Remark 2. Dealing with infinite variances
is much easier in the nonstationary case; see the following subsection for details.
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them into consideration. In this case, their coefficient may not be consistently estimated,

but the nuisance trend parameters are still eliminated. The invertibility requirement in

Assumption 3 may also impose conditions on αl; for instance, if fl(t) = tαl , it is required

that αl > −0.5.

For cases such as fl(t) = tαl with αl < −0.5, one must resort to different methods. This

is because
∫ s
0
τ (r)τ (r)′dr is not a proper integral. Which approach should be used when

analyzing such situations depends on the particularities of the respective data generating

process. Assume, for instance, the vector f(t) to have absolutely summable elements,∑
j≥1 |fl(j)| < ∞ ∀ l = 1, . . . , L, and the limit

∑
t≥1 f(t)f(t)

′ to be for simplicity nonsin-

gular. Then,
∑t

j=1 wjf(j)
′ has uniformly bounded variance. Hence, Ĉ(t)−C is uniformly

bounded in probability, and
(
Ĉ(t) − C

)
f(t) will vanish as required when t → ∞ since

f(t)→ 0.

The fact that recursive deterministic components are not “completely” removed at

the beginning of the sample, does not hinder the use of the recursively adjusted data: for

instance, covariance matrices are consistently estimated, as shown in the example below.

Example 2 Assume the process wt to be covariance-ergodic, T−1
∑T

h+1 wtw
′
t−h

p→ Γh.

Denote by Γ̂h the sample autocovariances with recursive adjustment, Γ̂h = 1
T

∑T
t=h+1 w̃tw̃

′
t−h

and by ‖·‖1 the city-block norm. Then,

E

(∥∥∥∥∥vec

(
Γ̂h −

1

T

T∑
t=h+1

wtw
′
t−h

)∥∥∥∥∥
1

)

≤ 1

T

T∑
t=h+1

E
(∥∥vec

(
wt (w̃t−h −wt−h)

′)∥∥
1

)
+

1

T

T∑
t=h+1

E
(∥∥vec

(
(w̃t −wt)w

′
t−h
)∥∥

1

)
+

1

T

T∑
t=h+1

E
(∥∥vec

(
(w̃t −wt) (w̃t−h −wt−h)

′)∥∥
1

)
≤ C∗K2

T

(
T∑

t=h+1

φ(t− h) +
T∑

t=h+1

φ(t) +
T∑

t=h+1

φ(t)φ(t− h)

)
.

(To establish the second inequality, the Cauchy-Schwarz inequality has been applied element-

wise, and the fact that wt has uniformly bounded second-order moments was exploited.)

Since φ(t)→ 0, convergence follows. Note that the convergence rate of Γ̂h is

Γ̂h − Γh = Op

(
max

{
1

T

T∑
t=1

φ(t),E

(∥∥∥∥∥vec

(
Γh −

1

T

T∑
t=h+1

wtw
′
t−h

)∥∥∥∥∥
1

)})
.
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The effect of recursive adjustment on the common trends of the (co-)integrated VAR

is quite different. We study it in a more general setup in the following subsection.

3.2 Recursive adjustment under nonstationarity

The behavior of the adjusted series changes in the nonstationary case, say when working

in the space of the common trends wt = β′⊥xt. Namely, the difference between w̃t

and wt does not vanish asymptotically, not even at the end of the sample. To make the

term nonstationarity more precise, we assume that there exists a limiting continuous-time

process for the suitably normalized and interpolated process wt in question. So let

diag
(
ν−1T

)
w[sT ] ⇒ V(s), s ∈ [0, 1] (10)

for some K-dimensional vector νT of normalizing functions such that νT →∞ as T →∞,

where theK-dimensional process V(s) is pathwise integrable and almost surely continuous

at the origin, lims→0V(s) = V(0) a.s. To formulate the result, define the recursively

adjusted limiting process,

Ṽτ (s) = V(s)−V(0)−
(∫ s

0

(V(r)−V(0)) τ (r)′dr

)(∫ s

0

τ (r)τ (r)′dr

)−1
τ (s)

for s ∈ (0, 1]. Subtracting V(0) in inconsequential, since w̃t is invariant to a constant

shift, having convened in Section 2.1 that a constant is always to be accounted for. At

the same time, this ensures almost sure continuity of Ṽτ (·) at the origin; see the proof

of Proposition 2 below. We are now in the position to prove weak convergence of the

suitably normalized process ỹt to the recursively adjusted process Ṽτ (s).

Proposition 2 Let Assumption 3 hold true jointly with convergence in (10). Then

diag
(
ν−1T

)
w̃[sT ] ⇒ Ṽτ (s)

and Ṽτ (s) is almost surely continuous at s = 0.

Proof: See the Appendix.

The assumptions of the proposition allow for instance wt to be an I(1) process, converg-

ing weakly to a multivariate Brownian motion (possibly with singular covariance matrix)

with νT = (T 0.5, . . . , T 0.5)
′
, but also for I(d) processes converging to fractional Brownian

motion (of type I or II) with a normalizing factor νT depending on the fractional inte-

gration parameter d. Processes converging to α-stable Lévy motions are also allowed –

hence not requiring wt to have finite variance; naturally, νT depends on the index α in

this case. Nonzero starting values are covered, too; the key requirement is continuity of

the paths at s = 0.

13



Equation (6) applies of course in the nonstationary case as well, leading to

diag
(
ν−1T

)
Ãw[sT ] ⇒ AṼτ (s)

and to

diag
(
ν−1T

)
Aw̃[sT ] ⇒ ÃV

τ
(s)

for some conformable matrix A.

Example 3 Let K = 1. If T−0.5w[sT ] converges weakly to a Brownian motion B(s) and

one recursively removes a constant (L = 1 with f1(t) = 1 and α1 = 0), or a constant and

a linear trend (L = 2, with f1(t) = 1 and α1 = 0, as well as f2(t) = t and α2 = 1), two

particular cases previously discussed in the literature are recovered. In the constant-only

case, it holds that

w̃t = wt −
1

t

t∑
j=1

wj; (11)

in the constant-and-linear-trend case it holds that

w̃t = wt +
2

t

t∑
j=1

wj −
6

t(t+ 1)

t∑
j=1

j wj; (12)

w̃[sT ] converges weakly after normalization to the recursively demeaned Brownian motion

B̃1(s),

B̃1(s) =

{
B(s)− 1

s

∫ s
0
B(r)dr , s > 0

0 a.s. , s = 0
,

and the recursively detrended Brownian motion B̃1;s(s),

B̃1;s(s) =

{
B(s) + 2

s

∫ s
0
B(r)dr − 6

s2

∫ s
0
r B(r)dr, s > 0

0 a.s. , s = 0
,

respectively. See Shin and So (2001), Taylor (2002), or Chang (2002).

3.3 Limiting distribution

We are now in the position to give the asymptotic distributions of the trace and maximum

eigenvalue test statistics; see the following proposition. As was to be expected, they

have the typical structure of a multivariate Dickey-Fuller distribution and depend on the

deterministic trend term assumed.

Proposition 3 Let W(s) be a (K−r)-dimensional vector of independent standard Wiener

processes and W̃τ (s) the corresponding recursively adjusted version, and dW̆τ̇ (s) denote

14



the adjusted differential dW(s)−
(∫ 1

0
dWτ̇ ′

(∫ 1

0
τ̇ τ̇ ′dr

)−1)
τ̇ (s) ds where τ̇ (s) = d

ds
τ (s).

Under Assumptions 1, 2, and 3 and T →∞,

1. it holds for the Recτ statistics from (8) computed with yt from (1) that

Recτ (r)
d→ tr

[∫ 1

0

dW̆τ̇
(
W̃τ

)′(∫ 1

0

W̃τ
(
W̃τ

)′
ds

)−1 ∫ 1

0

W̃τ
(

dW̆τ̇
)′]

,

2. and Recτmax (r) from (9) converges in distribution to the maximum eigenvalue of the

matrix in brackets.

Proof: See the Appendix.

The consistency of tests for r = r0 against r > r0 based on Recτ (r0) or Recτmax (r0)

is given: it is argued in the proof that the r non-zero eigenvalues have the same limit as

when computing them with the unobservable xt and not adjusting for a trend. Building

on the proof of Proposition 3, the power against sequences of local alternatives can be

analyzed. While the topic is not pursued here, it is obvious from the proof that the power

is nontrivial in 1/T neighbourhoods of the null.

Remark 3 If the hypothesized cointegration rank, r0, is larger than the actual one, the

distribution of Recτ (r0) is not given as above, but by the sum of the K − r smallest

solutions of the eigenvalue problem∣∣∣∣ρ ∫ 1

0

W̃τ
(
W̃τ

)′
ds−

∫ 1

0

W̃τ
(

dW̆τ̇
)′ ∫ 1

0

dW̆τ̇
(
W̃τ

)′∣∣∣∣ = 0.

See Johansen (1995), top of p. 158.

Should some of the deterministic components in the differences be orthogonal to the

cointegrating relations, Proposition 3 still applies, but the deterministic components would

be overspecified – a case in which losses in terms of power against sequences of local

alternatives can appear, in comparison with the correctly specified model; see Doornik

et al. (1998) or Saikkonen and Lütkepohl (1999) for the case of a linear trend. This could

be offset by constructing tests that account only for the deterministics present in the

cointegrating relations.7 The drawback is that such tests are only asymptotically similar;

see Nielsen and Rahbek (2000) for a discussion of the implications. Moreover, dealing with

the uncertainty about such orthogonality is not trivial, as pointed out e.g. in Demetrescu

et al. (2009). This paper takes the easy way out and only discusses test statistics that

are similar.
7It is tempting to conjecture what their asymptotic behavior would be: the unaccounted trend com-

ponent, if “trending enough,” will dominate one of the stochastic trends and the limiting distribution
changes accordingly.

15



4 Comparison with LR and GLS-adjusted tests

This subsection presents results from an examination of the small-sample properties of

tests for the cointegration rank based on recursively adjusted data. The two most common

cases in empirical work were considered: a constant, as well as a constant and a linear

trend. All simulations were conducted in Matlab.8 We compared the Recτ test with the

original LR test of Johansen (1995) and the tests with GLS adjustment (denoted here

by SL); see Saikkonen and Luukkonen (1997) and Saikkonen and Lütkepohl (1999) for

the mean-adjusted version, and Saikkonen and Lütkepohl (2000b) and Lütkepohl et al.

(2001) for the trend-adjusted version.

The test statistics with recursive adjustment were computed as indicated in Section

2.3. In particular, adjusting for deterministics was conducted as follows. The lagged

levels yt−1 were recursively adjusted (element-wise) as in Equations (11) and (12). The

differences ∆yt required no adjustment in the case of a constant. In the case of a linear

trend, they were adjusted for a non-zero mean by subtracting their sample average.

But before proceeding to the examination of the small-sample properties of the test for

the cointegration rank with recursive removal of deterministics, critical values are required.

These were obtained by discrete approximation of the relevant stochastic functionals using

100 000 replications and 400 integration points.

trace test maximum eigenvalue test

constant constant & trend constant constant & trend

K − r 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 2.78 3.95 6.77 2.29 3.30 5.89 2.76 3.89 6.63 2.28 3.28 5.79
2 9.46 11.28 15.32 7.66 9.36 13.18 8.54 10.28 14.13 6.95 8.57 12.07
3 19.37 21.95 27.26 15.56 17.87 22.74 14.36 16.51 20.99 12.02 13.97 18.28
4 32.73 35.85 42.34 26.27 29.07 35.26 20.27 22.63 27.47 17.35 19.67 24.28
5 50.14 53.99 61.36 40.20 43.74 50.93 26.19 28.70 34.00 22.78 25.29 30.26
6 71.27 75.71 84.59 57.61 61.80 70.30 32.06 34.78 40.31 28.23 30.87 36.45
7 96.14 101.2 111.2 78.17 82.97 92.35 38.07 40.95 46.85 33.83 36.67 42.39
8 124.9 130.7 142.4 102.4 107.9 118.9 43.98 46.97 53.32 39.44 42.44 48.39
9 158.0 164.6 177.1 130.3 136.3 148.6 50.02 53.17 59.79 45.20 48.29 54.86
10 194.9 202.0 215.8 161.5 168.3 181.7 55.96 59.26 66.12 50.95 54.22 60.86

Table 1: Critical values of recursively demeaned and recursively detrended tests

The critical values for the trace and max eigenvalue statistics are given in Table 1 for

K−r ranging from 1 to 10; but only results for the trace test are presented in the following

small-sample comparison, as it appears to be the more popular variant in applied work.

The critical values for the LR tests were taken from Johansen (1995), and those for the

SL tests from Trenkler (2003).

Having obtained the needed critical values, one can now examine the small-sample

properties of the Recτ test. As the asymptotic analysis focuses on the similar test statis-

tics, the Monte Carlo samples were generated without deterministic components, yt = xt.

8Also, an EViews add-in for the cointegration rank test with recursive adjustment is available from
the authors: http://www.ect.uni-bonn.de/mitarbeiter/prof.-dr.-matei-demetrescu/reclr .
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The stochastic component was generated as follows:

xt =

[
ψIr 0

0 IK−r

]
xt−1 + ut. (13)

For ψ = 1 (or r = 0), the process xt is integrated but not cointegrated; for |ψ| < 1 and

0 < r < K, full-rank linear transformations of xt are cointegrated with cointegration rank

r. We generated the series with initial value

x0 =

[
γ/
√

1− ψ2 Ir 0

0 0K−r

]
, (14)

where γ was varied to investigate the impact of the initial condition on the behavior of

the tests. The initial condition is known to affect the performance of unit root tests; see

Müller and Elliott (2003) and Elliott and Müller (2006). By extension, initial values are

expected to have an effect on tests for the cointegration rank as well. E.g. Ahlgren and

Juselius (2012) quantify the different reaction of the LR and SL tests to the initial value.

The K elements of the process ut driving the (co)integrated VAR from (13) were taken

to be stable univariate AR(1) processes,

ut = φut−1 + εt, (15)

with |φ| < 1 and iid innovations εt; more precisely,

εt ∼ N

(
0,Σε =

[
Ir Θ

Θ′ IK−r

])
. (16)

Using the VAR(2) data generating process in (13)–(15) allows for a straightforward dis-

tinction between the long-run and the short-run properties. By setting φ = 0, xt becomes

a particular VAR(1) process, a data generating process also used by Toda (1994) and

subsequently in a number of other simulation studies where properties of cointegration

rank tests were explored; see among others Demetrescu et al. (2009). In Toda’s view,

this data generating process is particularly useful for investigating the properties of tests

for the cointegration rank, since other VAR(1) processes can be obtained from it by full-

rank linear transformations to which the tests are invariant. At the same time, it is a

parsimonious parametrization which allows for a reduced complexity of the Monte Carlo

experiments. Only results for K = 3 are reported; simulations were also run with K = 5,

but the results are similar and we do not report them here to save space.
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The matrix Θ is an r × (K − r) matrix. This matrix was either zero,

Θ =

{
(0.8, 0.4) for K = 3, r = 1

(0.8, 0.4)′ for K = 3, r = 2.
,

or

Θ =

{
(−0.8, 0.4) for K = 3, r = 1,

(−0.8, 0.4)′ for K = 3, r = 2.

The parameter ψ was set to 0.5. We investigated the impact of the initial condition by

setting γ = 0 and γ = 5. The generated samples were of size T = 100. The simulations

were run with 10 000 replications for each case.

For each case, both the relative rejection frequencies of the test based on the Recτ ,

LR, and SL statistics, and the relative frequencies of ranks selected by the sequential

testing procedure suggested by Johansen (1995) are indicated.

In addition, we report for each case the relative frequencies of ranks selected by a

combination procedure, choosing as estimate for the cointegration rank the rounded up

average of the ranks estimated using each of the three tests. The reason for using a

combination procedure, apart from the fact that it delivers an estimate of the cointegration

rank (which is the key input for estimation of vector error-correction models), is as follows.

The Monte Carlo experiments in this section show that there are some differences in the

behavior of the compared tests, especially in terms of rejection frequencies under the

alternative. But the differences depend on the data generating process, so it is not known

in advance which of the three tests would perform better. Thus, it appears to be a

superior strategy to combine the three tests, following e.g. Harvey et al. (2009) or Bayer

and Hanck (2013). There is, however, a serious drawback to combining the tests directly

(say, via unions of rejections) because critical values have to be obtained specifically for

each combination method. Opposed to that, it is straightforward to combine the estimates

of the cointegration rank of the analyzed VAR as outlined above.

The small-sample examination was focused on two cases. First, φ was set to 0, and

the order of the VAR(1) process xt was assumed to be known. This served the purpose of

separating the problems of testing for the cointegration rank, and of choosing an appro-

priate lag order. Second, φ was set to −0.5, and the lag order for the unrestricted VAR

was chosen by means of the Akaike information criterion, as it is closer to what might be

done in real-life applications.

The discussion focusses here on the specification with short-run dynamics, i.e. φ =

−0.5.9 The results for the case γ = 0 are reported in the upper halves of Tables 2–4. In

the case where Θ = 0, the recursively adjusted test has good control with respect to the

empirical rejection frequencies under the null; while deviating from the nominal 5%, the

9The results for the case without short-run dynamics are available on the corresponding author’s
homepage. The results are broadly consistent to those with short-run dynamics.
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empirical rejection frequency is in all but one case between 4.4% and 5.9%. In contrast,

in most of the cases the LR test rejects a bit more often under the null.10 Compared to

the LR test, the SL test is closer to the nominal 5%, especially when detrending, but is

not as good as the Recτ test when demeaning. Moreover, when demeaning, the LR and

SL tests tend to have lower empirical rejection frequencies under the alternative in spite

of having higher empirical rejection frequencies under the null; in particular the SL test

always rejects less, while the LR test is ranking in the middle this time. When detrending,

the LR test in some cases rejects more often than the Recτ test but this can be attributed

to the higher empirical rejection frequencies under the null. When looking at the relative

frequencies of chosen ranks for Θ = 0, in all but one case is the Recτ test better than

the two other single tests; the combination procedure is marginally better than all three

single tests. In the case where Θ is a nonzero matrix as indicated above, the overall image

changes, but not essentially. Now, the superiority of the Recτ test is not so clear-cut

anymore. When focusing on rank selection, the Recτ test is better than the other two

single tests for the case with a constant, but the LR beats the Recτ test in the case of a

constant and a trend, at least for r = 1 and r = 2. The combination procedure is always

better in selecting the correct rank. The choice of nonzero Θ does not seem crucial as the

results are very similar for both specifications.

Let us now examine the case with nonzero initial value, i.e. γ = 5 in our simulations.

For the empirical rejection frequencies under the null, the picture is similar to the case

with γ = 0. Concerning the empirical rejection frequencies under the alternative, the SL

test is the most affected of the three single tests. There is a large drop in its empirical

rejection frequency under the alternative and its ability to select the correct cointegration

rank for r=1 and r=2. By construction, the combination procedure is affected when one

of the three tests shows a decrease in its ability to select the correct cointegration rank

and is therefore not always superior to the three single tests in this specification. But it

still is a valid choice if the underlying data generating process is not known. Consistent

with the findings of Meng et al. (2013) for the univariate case, the power of our recursively

adjusted procedure compared to the LR test drops when the initial value is large.11 This

is especially the case for Θ = 0. When Θ is a nonzero matrix, the difference is much

smaller, which can be explained by the fact that the overall power is different for different

Θ.

To sum up our findings, the Recτ test is superior to its competitors in terms of

empirical rejection frequencies under both the null and the alternative in the majority of

the studied cases. Similarly, the combination procedure to estimate the cointegration rank

performs well. In most cases, the LR test performs worse than the Recτ test, but it seems

10Such behavior of the LR test is not surprising: it has been signaled in the literature before.
11It may be worth mentioning that the extent of this finding also depends on the short-run dynamics.

In particular, for φ = 0, the power of the recursively adjusted procedure falls much slower and is still
superior to that of the LR test for the parameter values of this Monte Carlo study.
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to be more robust to an increase in the initial value, at least in terms of power. The SL

test is the most affected one given an increase of the initial value: in some specifications it

shows a dramatic drop in empirical rejection frequency under the alternative for γ = 5. In

a nutshell, the Recτ test is superior to the LR and SL tests in terms of empirical rejection

frequencies both the null and the alternative in many cases, but not in all. No single test

dominates the other two uniformly. The combination procedure consisting of choosing as

cointegration rank the rank indicated by the average of chosen ranks12 appears to be the

better alternative when estimating the cointegration rank.

5 Conclusions

Recursive demeaning or detrending have been successfully used in time series inference,

e.g. to reduce the bias of autoregressive parameter estimates or to increase the power

of unit root tests. Moving on to multivariate, potentially nonstationary time series, we

addressed the question of whether such improvements are achievable when inferencing

about the cointegrating rank as well.

The paper therefore analyzed the asymptotic and small-sample behavior of so-called

Recτ statistics for testing the cointegration rank of cointegrated VARs. They arise by re-

cursively adjusting the lagged levels for deterministic components prior to the application

of the test.

To do so, the paper also analyzed the effect of recursive removal of general trend

components (recursive adjustment) on time series. Two cases were discussed: first, the

series were assumed to be weakly stationary (corresponding to the equilibrium error),

and second, the series were assumed to be nonstationary and to converge weakly to a

continuous-time process when suitably normalized (corresponding to the common trends).

In the first case, the effect of recursive adjustment was shown to vanish asymptotically,

while, in the second, the limiting process was shown to be affected in a predictable manner.

Thus, the null limiting distributions of the cointegration rank tests can be given in terms

of recursively adjusted Brownian motions.

Focusing on the empirically relevant cases of a constant and a trend, it was found by

Monte Carlo simulations that the proposed Recτ test procedure performs well in finite

samples, and is often superior to its competitors in terms of empirical rejection frequencies

under the null and under the alternative. No test was uniformly better, however. When

focusing on the estimation of the cointegration rank, a very simple procedure combining

the outcomes of the Recτ , the LR and the SL tests performs very promising.

12In our experience, this was practically always a two-out-of-three decision.
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Appendix

Proof of Proposition 1

To derive the asymptotic behavior of the difference between w̃t and wt, note that

w̃t = wt −

(
1

t

t∑
j=1

wj

(
D−1t f(j)

)′)(1

t

t∑
j=1

(
D−1t f(j)

) (
D−1t f(j)

)′)−1
D−1t f(t)

with D−1t defined in Assumption 3. Let then

sj,t =
(
D−1t f(j)

)′(1

t

t∑
j=1

(
D−1t f(j)

) (
D−1t f(j)

)′)−1
D−1t f(t)

and note that, for s ∈ [0, 1],

s[st],t ⇒ τ (s)′
(∫ 1

0

τ (s)τ (s)′ds

)−1
τ (1)

as t→∞ such that

sup
s∈[0,1]

∣∣∣∣∣s[st],t − τ (s)′
(∫ 1

0

τ (s)τ (s)′ds

)−1
τ (1)

∣∣∣∣∣→ 0;

the sequence of suprema being convergent, it must be bounded. Moreover, the matrix∫ 1

0
τ (s)τ (s)′ds is invertible according to Assumption 3. Hence s[st],t converges as t→∞ to

a continuous function, which, being defined on the compact interval [0, 1], is also bounded.

This implies that sj,t is itself bounded (uniformly in s):

sup
s∈[0,1]

∣∣s[st],t∣∣ ≤ sup
s∈[0,1]

∣∣∣∣∣s[st],t − τ (s)′
(∫ 1

0

τ (s)τ (s)′ds

)−1
τ (1)

∣∣∣∣∣
+ sup

s∈[0,1]

∣∣∣∣∣τ (s)′
(∫ 1

0

τ (s)τ (s)′ds

)−1
τ (1)

∣∣∣∣∣
≤ C∗

Now, sj,t is a scalar, so it holds that

Cov (w̃t −wt) = Cov

(
1

t

t∑
j=1

wjsj,t

)
=

1

t2

t∑
i=1

t∑
j=1

si,tsj,t E
(
wiw

′
j

)
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and thus that

‖Cov (w̃t −wt)‖ ≤
1

t2

t∑
i=1

t∑
j=1

|si,tsj,t| ‖Γi−j‖ ≤ sup
t≤T,j≤t

s2j,t
1

t2

t∑
i=1

t∑
j=1

‖Γi−j‖ .

By using the fact that the double sum on the r.h.s. is bounded by the square of the sum

in the assumptions of the proposition, one obtains

‖Cov (w̃t −wt)‖ ≤ (φ(t))2 ≤ C∗φ(t)

for some C∗ not depending on t (we used the fact that φ(t)→ 0 implying that there exists

a finite t0 for which |φ(t)| < 1 for all t > t0, and hence (φ(t))2 ≤ φ(t) for all t > t0). Note

further that, due to the Cauchy-Schwarz inequality, it holds that

E
(
‖w̃t −wt‖2

)
= tr Cov (w̃t −wt) ≤ K ‖Cov (w̃t −wt)‖ ‖IK‖ ,

which establishes the result.

Proof of Proposition 2

We begin by establishing continuity at s = 0 of Ṽτ (s). Let Dτ = diag(τ (s)) and denote

by ι a vector of ones. Write now(∫ s

0

(V(r)−V(0)) τ (r)′dr

)(∫ s

0

τ (r)τ (r)′dr

)−1
τ (s)

=

(
1

s

∫ s

0

(V(r)−V(0))
(
D−1τ τ (r)

)′
dr

)(
1

s

∫ s

0

D−1τ τ (r)
(
D−1τ τ (r)

)′
dr

)−1
D−1τ τ (s).

Since τ is continuous on [0, 1], D−1τ τ (r) → ι as s → 0 ∀0 < r < s. Hence, D−1τ τ (r) →
1 = O(ι). Moreover,

∫ s
0
D−1τ τ (r) (D−1τ τ (r))

′
dr is invertible for any s > 0 and, us-

ing the first Mean Value Theorem for integration element-wise, it can be seen that
1
s

∫ s
0
D−1τ τ (r) (D−1τ τ (r))

′
dr is bounded away from 0. Summing up,

(∫ s

0

(V(r)−V(0)) τ (r)′dr

)(∫ s

0

τ (r)τ (r)′dr

)−1
τ (s) = O

(
1

s

∫ s

0

(V(r)−V(0)) dr

)
along each path of V(s). Applying the first Mean Value Theorem for integration again,

it follows for each element 1 ≤ k ≤ K that ∃0 < ξk < s such that

1

s

∫ s

0

(Vk(r)− Vk(0)) ι′dr = (Vk(ξk)− Vk(0)) ι′.
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With the continuity of V(s) at the origin, one has as s→ 0 (and thus ξk → 0) that

Ṽτ (s)→ 0

almost surely as required.

To establish the desired weak convergence, assume w.l.o.g. that τl ≥ 0 ∀l and consider

the functional

F [V] =

(V(s)−V(0))−
(∫ s

0
(V(r)−V(0)) τ (r)′ dr

) (∫ s
0
τ (r) τ (r)′ dr

)−1
τ (s) , s > 0

0 s = 0.

The result follows with the continuous mapping theorem [CMT] if F [·] is a continuous

functional, i.e.

sup
s∈[0,1]

‖V1 (s)−V2 (s)‖ → 0 implies sup
s∈[0,1]

‖F [V1] (s)−F [V2] (s)‖ → 0.

Write with V(0) cancelling out

F [V1]−F [V2] = V1 (s)−V2 (s)

−
(∫ s

0

(V1 (s)−V2 (s)) τ (r)′ dr

)(∫ s

0

τ (r) τ (r)′ dr

)−1
τ (s) .

Then, sups∈[0,1] ‖F [V1] (s)−F [V2] (s)‖ is bounded by

sup
s∈[0,1]

‖V1 (s)−V2 (s)‖

+

(∫ s

0

sup
s∈[0,1]

|V1 (s)−V2 (s)| τ (r)′ dr

)(∫ s

0

τ (r) τ (r)′ dr

)−1
τ (s) ,

where sups∈[0,1] |V1 (s)−V2 (s)| is the vector
{

sups∈[0,1] |V1,l (s)− V2,l (s)|
}
1≤k≤K . For any

s ∈ [q, 1] , the second summand on the r.h.s. vanishes when

sup
s∈[q,1]

|V1,l (s)− V2,l (s)| ≤ sup
s∈[q,1]

‖V1 (s)−V2 (s)‖ ≤ sup
s∈[0,1]

‖V1 (s)−V2 (s)‖ → 0.

So we only have to show that the property extends to s ∈ [0, q] . This is indeed the case if(∫ s

0

ιτ (r)′ dr

)(∫ s

0

τ (r) τ (r)′ dr

)−1
τ (s) = O (1)

as s→ 0. In turn, the boundedness is implicit from the proof of continuity of F [V] (s) at

0 and the result follows.
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We now state and prove two preliminary lemmas required for the proof of Proposition

3.

Lemma 2

1. Under Assumptions 1, 2, and 3, it holds as T → ∞ that supt≤T

∣∣∣∆̆yt −∆xt

∣∣∣ =

supt≤T

∣∣∣∆̆xt −∆xt

∣∣∣ = Op(T
−0.5).

2. Let vt be some I(1) vector process, possibly cointegrated, such that T−0.5v[sT ] ⇒
B∗(s), s ∈ [0, 1], for some Brownian motion B∗ with suitable covariance matrix.

Then,
∑T

t=p+1 ṽt−1∆v′t−j = Op(T ).

Proof of Lemma 2

1. Under Assumptions 1, 2, and 3,

√
T

(
T∑
t=2

∆yt∆f(t)′

)(
T∑
t=2

∆f(t)∆f(t)′

)−1
∆f(t)

⇒
(∫ 1

0

dV (r) τ̇ (r)′
)(∫ 1

0

τ̇ (r)τ̇ (r)′dr

)−1
τ̇ (s)

(see the arguments leading to Equation (19) in the proof of Lemma 3.5 below). Since

τ̇ (s) is bounded on [0, 1], the r.h.s. is Op(1) uniformly, and we have that

sup
t≤T

∣∣∣∆̆yt −∆xt

∣∣∣ = sup
t≤T

∣∣∣∣∣∣
(

T∑
t=2

∆yt∆f(t)′

)(
T∑
t=2

∆f(t)∆f(t)′

)−1
∆f(t)

∣∣∣∣∣∣ = Op(T
−0.5)

as required.

2. The behavior of sample cross-product moments of lagged levels and lagged differences

is well-understood in the case of no detrending; see e.g. Phillips and Durlauf (1986) or

Phillips (1988). Concretely,
∑T

t=p+1 vt−1∆v′t−j = Op(T ), 1 ≤ j ≤ p under fairly general

conditions covering our assumptions. For recursively adjusted levels, it holds that

T∑
t=p+1

ṽt−1∆v′t−j =
T∑

t=p+1

vt∆v′t−j −
T∑

t=p+1

(
t∑

j=1

vjf(j)
′

)(
t∑

j=1

f(j)f(j)′

)−1
f(t)∆v′t−j.

The first summand on the r.h.s. is Op(1); by using the fact that vt−1 = Op(T
0.5) uniformly

together with arguments similar to those used in the proof of Propositions 1 and 2, one can

conclude that the second summand on the r.h.s. behaves like T 0.5
∑T

t=p+1 τ ([sT ])∆vt−j.
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But T−0.5
∑T

t=p+1 τ ([sT ])∆vt−j ⇒
∫ 1

0
τ (s)dB∗, so

T∑
t=p+1

ṽt−1∆v′t−j = Op(T )

as required.

Lemma 3 (This is the analog of Lemma 10.3 of Johansen, 1995.) Let β⊥ be an orthog-

onal complement of β, γ = β⊥ (β′⊥β⊥)
−1

, as well as BT = γ, to maintain the original

notation of Johansen. Define also

Cov

(
∆xt

β′xt−1

∣∣∣∣∣∆xt−1, . . . ,∆xt−p

)
=

(
Σ00 Σ0β

Σβ0 Σββ

)
.

It then holds as T →∞ that

1. S00
p→ Σ00,

2. β′S11β
p→ Σββ,

3. β′S10
p→ Σβ0,

4. T−1B′TS11BT
d→
∫ 1

0
B̃τ (s)

(
B̃τ (s)

)′
ds,

5. B′TS10α⊥
d→
∫ 1

0
B̃τ (s)

(
dV̆τ̇ (s)

)′
α⊥,

6. B′TS11β = Op(1),

where V is a K-dimensional Brownian motion with covariance matrix Cov (V) = Σε, dV̆τ̇

is the differential defined in Proposition 3, and B̃τ is the recursively adjusted (K − r)-

dimensional Brownian motion B for which Cov (B) = γΞΣεΞ
′γ ′.

Proof of Lemma 3

1. Let zt−1 =
(
(∆xt−1)

′ , . . . , (∆xt−p)
′)′. It holds thanks to standard OLS algebra that

r0t = ∆̆yt −
1

T

T∑
t=p+1

∆̆ytz̆
′
t−1

(
1

T

T∑
t=p+1

z̆t−1z̆
′
t−1

)−1
z̆t−1.

Recall, supt≤T

∥∥∥∆̆yt −∆xt

∥∥∥ = Op (T−0.5) so it follows that supt≤T ‖z̆t−1 − zt−1‖ = Op (T−0.5).
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Then,

1

T

T∑
t=p+1

z̆t−1z̆
′
t−1 =

1

T

T∑
t=p+1

(zt−1 + z̆t−1 − zt−1) (zt−1 + z̆t−1 − zt−1)
′

=
1

T

T∑
t=p+1

zt−1z
′
t−1 +

1

T

T∑
t=p+1

zt−1 (z̆t−1 − zt−1)
′

+
1

T

T∑
t=p+1

(z̆t−1 − zt−1) z
′
t−1 +

1

T

T∑
t=p+1

(z̆t−1 − zt−1) (z̆t−1 − zt−1)
′

so, for a suitable constant C∗,∥∥∥∥∥ 1

T

T∑
t=p+1

z̆t−1z̆
′
t−1 −

1

T

T∑
t=p+1

zt−1z
′
t−1

∥∥∥∥∥
≤ C∗

(
sup
t
‖z̆t−1 − zt−1‖ ·

1

T

T∑
t=p+1

‖zt−1‖+

(
sup
t
‖z̆t−1 − zt−1‖

)2
)
.

Given the moment conditions on zt−1,
1
T

∑T
t=p+1 ‖zt−1‖ = Op (1) so

1

T

T∑
t=p+1

z̆t−1z̆
′
t−1 =

1

T

T∑
t=p+1

zt−1z
′
t−1 +Op

(
T−0.5

)
Similarly,

1

T

T∑
t=p+1

∆̆yt−1z̆
′
t−1 =

1

T

T∑
t=p+1

∆xt−1z
′
t−1 +Op

(
T−0.5

)
.

Hence, using supt≤T ‖z̆t−1 − zt−1‖ = Op (T−0.5) again, one immediately has that

sup
t≤T

∥∥∥∥∥∥r0t −∆xt −
1

T

T∑
t=p+1

∆xtz
′
t−1

(
1

T

T∑
t=p+1

zt−1z
′
t−1

)−1
zt−1

∥∥∥∥∥∥ = Op(T
−0.5),

or

r0t = ∆xt −
1

T

T∑
t=p+1

∆xtz
′
t−1

(
1

T

T∑
t=p+1

zt−1z
′
t−1

)−1
zt−1 +Op(T

−0.5)

uniformly. We then have using uniformity of the Op(T
−0.5) term that

S00 =
1

T

∑
∆xt−1∆x′t−1

− 1

T

∑
∆xt−1z

′
t−1

(
1

T

∑
zt−1z

′
t−1

)−1
1

T

∑
zt−1∆x′t−1 + op(1)
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such that

S00
p→ Cov (∆xt−1)− Cov

(
∆xt−1, z

′
t−1
)

(Cov (zt−1))
−1 Cov

(
zt−1,∆x′t−1

)
= Cov (∆xt−1|zt−1) = Σ00.

2. We have that

r1t = ỹt−1 −
1

T

T∑
t=p+1

ỹt−1z̆
′
t−1

(
1

T

T∑
t=p+1

z̆t−1z̆
′
t−1

)−1
z̆t−1

with ỹt−1 = x̃t−1. In the direction of β, xt−1 is I(0), so the assumed moment conditions

indicate that 1
T

∑T
t=p+1 ‖β

′x̃t−1‖ = Op(1). It then follows along the lines of the proof of

Lemma 2.1 that

β′r1t = β′x̃t−1 −
1

T

T∑
t=p+1

β′x̃t−1z
′
t−1

(
1

T

T∑
t=p+1

zt−1z
′
t−1

)−1
zt−1 +Op(T

−0.5)

uniformly. As a consequence of the uniformity of the Op(T
−0.5) term, the sample co-

variance of β′r1t equals, up to a vanishing term, the sample covariance of β′x̃t−1 −
1
T

∑T
t=p+1 β

′x̃t−1z
′
t−1

(
1
T

∑T
t=p+1 zt−1z

′
t−1

)−1
zt−1. So β′S11β is, up to a vanishing term,

the sample covariance of a recursively adjusted I(0) process and it holds along the lines

of Example 2 that

β′S11β
p→ Cov (β′xt−1)

−Cov
(
β′xt−1, z

′
t−1
)

(Cov (zt−1))
−1 Cov

(
zt−1,x

′
t−1β

)
= Cov (β′xt−1|zt−1)

= Σββ.

3. Analogous to Lemma 3.1 and Lemma 3.2 and omitted.

4. Along γ, xt−1 is I(1); make use of the CMT to establish that

1

T 1.5

T∑
t=p+1

γ̃ ′xt−1
d→
∫ 1

0

B̃τ (s) ds, (17)

and exploit again the fact that supt≤T ‖z̆t−1 − zt−1‖ = Op(T
−0.5) to conclude that

γ ′r1t = γ̃ ′xt−1 −
1

T

T∑
t=p+1

γ̃ ′xt−1z
′
t−1

(
1

T

T∑
t=p+1

zt−1z
′
t−1

)−1
zt−1 +Op(1)
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uniformly. Use now Lemma 2.2 to conclude that

1

T

T∑
t=p+1

γ̃ ′xt−1z
′
t−1 = Op(1),

leading to

sup
t≤T

∥∥∥γ ′r1t − γ̃ ′xt−1∥∥∥ = Op(1),

as well as

sup
t≤T

∥∥∥∥ 1√
T
γ ′r1t

1√
T
γ̃ ′xt−1

∥∥∥∥ = Op(T
−0.5). (18)

The limit of T−1B′TS11BT follows with Equation (18), Proposition 2, and the CMT.

5. Denote by x̆t the series xt adjusted the usual way for the deterministic components of

the differences, by r̆1t the (unfeasible) residuals from the projection of x̆t on the first p

lags of ∆̆yt, and let S̆11 = 1
T

∑T
p+1 r1tr̆

′
1t. Then, with αα′⊥ = 0,

B′TS10α⊥ = B′T

(
S10 − S̆11βα

′
)
α⊥

= γ ′
1

T

T∑
p+1

r1t (r0t −αβ′r̆1t)
′
α⊥.

Now, supt≤T ‖(r0t −αβ′r̆1t)− ε̆t‖ = Op(T
−0.5) since r0t and αβ′r̆1t have been adjusted

for deterministics in the same way ; cf. the proof of Lemma 2.1. Using the argument of

Johansen (1995), 2nd display on p. 148, it follows that the op(1) term does not affect the

asymptotic behavior of B′TS10α⊥,

B′TS10α⊥ =
1

T

T∑
t=p+1

γ̃ ′xt−1ε̆
′
tα⊥ + op(1),

where ε̆t = εt −
(∑T

t=p+1 εt∆f(t)′
)(∑T

t=p+1 ∆f(t)∆f(t)′
)−1

∆f(t), where ∆f(t) = f(t)−

f(t− 1). Hence, 1
T

∑T
t=p+1 γ̃

′xt−1ε̆
′
t can be written as the difference of two terms,

1

T

T∑
t=p+1

γ̃ ′xt−1ε
′
t

and

1

T 1.5

T∑
t=p+1

γ̃ ′xt−1
(
TD−1T ∆f(t)

)′( 1

T

T∑
t=2

(
TD−1T ∆f(t)

) (
TD−1T ∆f(t)

)′)−1

×

(
1√
T

T∑
t=2

(
TD−1T ∆f(t)

)
ε′t

)
.
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For the first term, one makes use of Theorem 2.2 in Kurtz and Protter (1991), whose con-

ditions hold with εt from Assumption 2 (in particular the martingale difference property

of γ̃ ′xt−1ε
′
t and Equation (17)) leading to

1

T

T∑
t=p+1

γ̃ ′xt−1ε
′
t
d→
∫ 1

0

B̃τ (s) (dV (s))′ .

For the second term, use Equation (17), the CMT, and Lemma 1 to arrive at

∫ 1

0

B̃τ (s)

((∫ 1

0

dV (r) τ̇ (r)′
(∫ 1

0

τ̇ (r)τ̇ (r)′dr

)−1)
τ̇ (s)ds

)′
(19)

as required.

6. Note that B′TS11β is the sample cross-product moment of a recursively adjusted I(1)

process with a recursively adjusted I(0) process. The derivation of the behavior of γ ′r1t

and Example 2 show that the recursive adjustment of the I(0) process has only an Op(1)

effect on B′TS11β, and Lemma 2.2 can be applied to obtain the desired magnitude order.

Proof of Proposition 3

The proposition is proved for the trace statistic only; the result for the maximum eigen-

value test statistic uses the same arguments.

The arguments of the proof of Theorem 11.1 of Johansen (1995) apply in a one-to-one

manner in our situation: the only difference consists in the behavior of the sample cross-

product moment matrices S00, S01 and S11 under recursive adjustment (more precisely,

S00, β
′S11β, β′S10, T

−1B′TS11BT , B′TS10α⊥, and B′TS11). The required results are derived

in Lemma 3 above; compare with Lemma 10.3 of Johansen (1995).

Following the argument leading to Equation 11.16 of Johansen (1995), the largest r

eigenvalues λ̂1, . . . , λ̂r are seen to converge in probability to the solutions of the determi-

nant equation ∣∣λΣββ − Σβ0Σ
−1
00 Σ0β

∣∣ = 0,

and the remaining K − r eigenvalues converge in probability to 0. The arguments on

p. 159 of the reference, together with the preliminary results of Lemma 3, establish the

asymptotic null distribution of the Recτ statistic, thus completing the proof.
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